• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 61
  • 39
  • 9
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 238
  • 58
  • 48
  • 44
  • 39
  • 31
  • 31
  • 25
  • 24
  • 24
  • 19
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Interactions entre céréale et légumineuse en association et acquisition de phosphore du sol : processus rhizosphériques sous-jacents / Species interactions for phosphorus acquisition between durum wheat and legume in intercropping : underlying mechanisms in the rhizosphere

Betencourt, Elodie 02 October 2012 (has links)
L'objectif de cette étude a été de préciser l'implication des processus rhizosphériques dans lesinteractions pour l'acquisition de phosphore (P) entre une céréale et une légumineuse enassociation. Nous avons proposé comme mécanisme de facilitation l'acidification de la rhizosphèredes espèces en association induite par la fixation de N2 de la légumineuse dans le cas de sol neutres àalcalins. Ainsi, l'étude s'est focalisée sur l'influence des changements de pH induits par les racines.Les effets de la disponibilité initiale en P du sol ainsi que de la distance entre les racines des espècesassociées ont également été testés. Les expérimentations ont été menées au champ ainsi qu'enconditions contrôlées. Le blé dur et différentes légumineuses ont été cultivés en culturemonospécifique ou en association sur un même sol pour toutes les expérimentations. Le sol neutreutilisé (Luvisol) présentait trois niveaux contrastés de fertilisation phosphatée et provenait desparcelles d'un essai de longue durée. Nous avons pu démontrer que la manipulation des interactionsrhizosphériques entre une céréale et une légumineuse en association pouvait être optimisée pourpermettre l'augmentation de la disponibilité en P dans la rhizosphère des espèces associées, etencore plus dans le cas de sols présentant une faible valeur initiale de disponibilité. Lescaractéristiques du sol ont eu un rôle clé dans la détermination des processus rhizosphériquesimpliqués. Dans notre cas, les changements de pH induits par les racines ont permis d'augmenter defaçon substantielle la disponibilité en P suite à une acidification, mais aussi à une alcalinisation de larhizosphère. Ainsi la légumineuse, mais aussi la céréale sont susceptibles de faciliter l'acquisition del'espèce associée. Les interactions relatives au pH peuvent influencer la disponibilité en P sur unedistance de plusieurs millimètres et ainsi améliorer l'acquisition de P des plantes à proximité del'espèce facilitatrice.Mots clés : culture associée, facilitation, rhizosphère, disponibilité, phosphore, pH, racine / The aim of the study was to elucidate the implication of rhizospheric processes on plant speciesinteractions for phosphorus (P) acquisition between a cereal and a legume, when intercropped. Weproposed that root-induced acidification of the rhizosphere by the intercropped legume due to N2-fixation as a mechanism of facilitation in neutral to alkaline soils. Thus, the study focused on rootinducedchanges of pH. The effects of initial soil P availability and distance between roots ofintercropped species were also tested. In order to achieve our goals, experiments in the field and incontrolled condition for several cropping devices were conducted. Durum wheat and differentlegumes were grown as sole crops and intercropped on the same soil for all the experiments. Weused a neutral soil (Luvisol) presenting three contrasted fertilization rates from the field of a longtermP fertilizer trial. We demonstrated that cereal-legume can be used to enhance P availability, andeven more so in low P soils, through managing rhizospheric interactions to optimize P acquisition ofintercropped species. Soil characteristics are also a key factor determining the influence of thoserhizospheric processes. In our studied soil root-induced changes of pH substantially enhanced Pavailability in the rhizosphere either through acidification or alkalization. Thus the legume but alsothe cereal may facilitate the acquisition of the intercropped species. Interactions involving pH canaffect P availability over distance of several millimeters and ultimately enhance P acquisition ofplants in the surrounding of the facilitative species.Key words: intercrop, facilitation, rhizosphere, availability, phosphorus, pH, root
42

A novel non-invasive optical method for quantitative visualization of pH and oxygen dynamics in soils

Rudolph-Mohr, Nicole January 2013 (has links)
In soils and sediments there is a strong coupling between local biogeochemical processes and the distribution of water, electron acceptors, acids and nutrients. Both sides are closely related and affect each other from small scale to larger scales. Soil structures such as aggregates, roots, layers or macropores enhance the patchiness of these distributions. At the same time it is difficult to access the spatial distribution and temporal dynamics of these parameter. Noninvasive imaging techniques with high spatial and temporal resolution overcome these limitations. And new non-invasive techniques are needed to study the dynamic interaction of plant roots with the surrounding soil, but also the complex physical and chemical processes in structured soils. In this study we developed an efficient non-destructive in-situ method to determine biogeochemical parameters relevant to plant roots growing in soil. This is a quantitative fluorescence imaging method suitable for visualizing the spatial and temporal pH changes around roots. We adapted the fluorescence imaging set-up and coupled it with neutron radiography to study simultaneously root growth, oxygen depletion by respiration activity and root water uptake. The combined set up was subsequently applied to a structured soil system to map the patchy structure of oxic and anoxic zones induced by a chemical oxygen consumption reaction for spatially varying water contents. Moreover, results from a similar fluorescence imaging technique for nitrate detection were complemented by a numerical modeling study where we used imaging data, aiming to simulate biodegradation under anaerobic, nitrate reducing conditions. / In Böden und Sedimenten sind biogeochemische Prozesse und die Verteilung von Größen wie Wasser, Elektronenakzeptoren, Säuregehalte und Nährstoffe in enger Weise miteinander gekoppelt. Diese wechselseitige Beeinflussung ist skalenübergreifend und reicht von sehr kleinen bis zu größeren Skalen. Die in realen Böden vorhandene Struktur z. Bsp. Aggregate, Pflanzenwurzeln, Schichten und Makroporen bedingen eine starke räumlich Heterogenität und zeitliche Dynamik dieser Größen. Gleichzeitig sind Verteilung und Dynamik sehr schwer zu beobachten, zumindest ohne ihre gleichzeitige Störung. Bildgebende Verfahren bieten eine sehr gute räumliche und zeitliche Auflösung und ermöglichen die Darstellung dieser Größen. Um die dynamische Wechselwirkung zwischen Pflanzenwurzeln und Boden, aber auch die komplexen physikalisch – chemischen Prozesse in Böden zu verstehen, sind neue bildgebende Verfahren notwendig. Ziel dieser Arbeit war es, eine neue nicht-invasive Methode zu entwickeln, die es ermöglicht biogeochemische Parameter in der Wurzelzone zu visualisieren. Innerhalb dieser Studie wurde ein quantitatives bildgebendes Verfahren entwickelt, dass die räumlichen und zeitlichen Dynamiken des pH Wertes in der Rhizosphäre erfasst. Diese auf Fluoreszenzemissionen basierende Methode wurde ebenso für Sauerstoffdetektion entwickelt und mit Neutronen Radiographie kombiniert um gleichzeitig Aussagen über Wurzelwachstum, Sauerstoffzehrung durch Wurzelatmung und Wurzelwasseraufnahme treffen zu können. Die kombinierte bildgebende Methode wurde dann in einem künstlichen Boden genutzt um Nischen und Übergangsbereiche von Sauerstoff bei variierenden Wassergehalten zu charakterisieren. Das große Potential von bildgebenden Verfahren zeigt sich bei Modellierungsstudien. In dieser Studie wurden Bilddaten als Eingabeparameter für die Simulierung von denitrifizierendem biologischem Schadstoffabbau genutzt.
43

Carboxylates in the rhizosphere of chickpea (Cicer arietinum) in relation to P acquisition

Wouterlood, Madeleine January 2005 (has links)
[Truncated abstract] The highly weathered, phosphorus-fixing soils of Western Australia require large amounts of P fertiliser to produce acceptable crop yields. Chickpea (Cicer arietinum L.) is an important leguminous crop that is increasingly used in rotations with wheat (Triticum aestivum L.), Western Australia’s major crop. Chickpea and a range of other species exude P-mobilising carboxylates into the rhizosphere. Plants that exude carboxylates may need less P fertiliser or may use P in the soil that is unavailable to other plants. There is a wealth of information about P mobilisation and carboxylate exudation by white lupin; in contrast, research on carboxylate exudation by chickpea is fairly limited. The major aim of this PhD research project was to investigate the relationships between exudation of carboxylates and soil and plant P status for chickpea ... In conclusion, whereas carboxylate exudation of plants such as white lupin is clearly targeted at P acquisition, chickpea showed constitutive carboxylate exudation mainly of malonate into the rhizosphere in a series of experiments, each with a different design. Unlike white lupin, chickpea forms associations with mycorrhizal fungi that may improve plant P status. Some of the functions of constitutive carboxylate exudation by chickpea may include P acquisition and deterring microorganisms, but the exact reasons and mechanisms remain unresolved.
44

Isolation and Characterization of Rhizosphere Bacterial Community from cultivated plants in Mahikeng, NorthWest Province, South Africa / Lorato Modise

Modise, Lorato January 2014 (has links)
The rhizosphere is characterized by the presence of high microbial activities which are influenced by plant root exudates. This study examined bacterial diversity and physiological functions plants rhizosphere using both culture-dependent and culture-independent techniques of seven cultivated. Physico-chemical properties of soil samples revealed that the rhizobacteria adapted well to pH ranging from 7.5 to 9.1. Macronutrients (carbon, nitrogen, calcium, magnesium, phosphorous, potassium, sodium and iron) had a wide range of concentration between 0 to 4380.1 mg/kg. Concentrations of metal elements (cadmium, cobalt, chromium, copper and zinc) from all rhizosphere samples were below the amount of 3.1 mg/kg, indicating that the samples were free from metal contaminations. Sole carbon substrates utilization of bacteria in rhizosphere samples were measured as Average Well Colour Development (A WCD) and Group-wise Average Well Colour Development (AWCDg) patterns. At seventy two hours, there was no significant difference in AWCD patterns between bacteria in all samples and there was a significant difference in AWCDg patterns. Biochemical tests showed majority of isolates had similar physiological properties to members of Bacillus genus. All the bacterial isolates exhibited positive antifungal trait, fifteen solubilized phosphate and three had cyanide production traits during in vitro plant growth promotion assays. In vitro plant growth revealed that bacterial isolate RL1 (Bacillus licheniformis) produced the highest concentration of indole acetic acid (IAA) at 25 mg/ml. Bacterial isolate RG3 (Bacillus pumilus) had the highest amino cyclopropane carboxylase (ACC) deaminase activity indicated by the high production of α-ketobutyrate produced at 4.8 mg/ml. There were significant differences in shoot length at P ≤ 5% level of significance and there was no significant difference in the number of leaves across all three inoculated plants at P ≥ 5% level of significance. Sequence and phylogenetic analysis of identified culture-dependent bacteria revealed a homologous similarity of 94 to 100% between isolates sequences and GenBank sequences. From this, 81% of the sequences were closely related to Firmicutes, 13% to Actinobacteria and 6% to Proteobacteria. From cultureindependent method, only 8 PCR-DGGE bands were detected, the 200 bp sequences in the 16S rRNA fragment showed 91 to 100% homologous similarity to GenBank sequences. Their 16S rRNA sequences was closely related to 50% uncultured bacterium clones, 25% Firmicutes, 13% Proteobacteria and 12% Bacteroidetes sequences. Both culture-dependent and cultureindependent techniques were precise in the identification and description of bacterial community in rhizosphere. / Thesis (M.Sc) North-West University, Mafikeng Campus, 2014
45

Ecological controls of rhizosphere processes and soil organic matter dynamics at a Sub-Arctic treeline

Parker, Thomas C. January 2015 (has links)
Rapid climate change in the Arctic and Sub-Arctic is causing vegetation change across large areas of tundra. Shrubs and trees are undergoing range expansions as part of an over-all trend of ‘greening’ of the tundra. This is of importance because northern peatlands contain around half of total soil carbon (C) and there is a potential for productive vegetation to interact with this C in a number of ways: (1) Ectomycorrhizal fungi (ECM) in symbiosis with trees and shrubs could potentially stimulate decomposition through extracellular enzyme production whilst extracting nitrogen (N) for their hosts; (2) deep snow, trapped by tall vegetation insulates the soil, resulting in higher winter-time microbial activity and has potential to influence growing season microbial activity; (3) the biochemistry of litter and decomposition environment associated with more productive vegetation could result in accelerated mass loss of litter and stimulate decomposition of older soil C. This thesis investigates how productive sub-arctic plant species in Northern Sweden interact with soil C by using ‘space-for-time’ transitions from forests (Betula pubescens), through intermediate shrub vegetation (Betula, Salix), to tundra heath (Empetrum nigrum). This was to test how ECM fungi, winter snow accumulation, defoliation events and litter input influence C cycling. C stocks, respiration rates and ECM growth rates were measured across these ecotones. It was found that birch forests and shrub stands had significantly lower soil C storage and higher respiration rates than adjacent heaths. This is contrary to the predictions of earth system models. Higher ECM growth rates at plots with low C storage and high cycling rates implied that they had an important role in the stimulation of C decomposition. To test whether snow cover in forests over winter had an important effect on C cycling, soils were transplanted between forest and heath (different snow cover), and respiration rates were measured over summer. It was found that deep snow cover over winter increases microbial activity in summer due to a warmer, more stable winter environment; this is hypothesised to be due to the environmental selection of a more active assemblage of decomposing microbes. A defoliation event of part of the birch forest by caterpillars allowed for a natural ‘experiment’. Trees with different degrees of defoliation were compared in their influence over soil C cycling processes. Defoliated plots shifted to slower-cycling states through a shift in the ECM community. This further implied that ECM fungi have an important role to play in rapid cycling of C in forests. A decomposition experiment using the litter of significant plant species in forest, shrub and heath communities was carried out by transplanting them between these key environments. This work showed that rapid decomposition of litter in the forest is driven by an interaction between carbohydrate-rich litter input and an effective decomposer community. This work addresses the relationship between vegetation productivity and C storage in the soil. This theme runs through every experiment as they test specific interactions between different plant groups and the soil. The results from this thesis suggest that increasing productivity and shrub expansion in the Arctic will stimulate decomposition of soil C via a number of pathways. Plant-soil interactions are clearly of importance in determining the fate of C in ecosystems and will play a key part in the balance of C in the future.
46

Rhizosphere Bacteria and Phytostabilization Success: The Association Between Bacteria, Plant Establishment and Metal(loid) Immobilization in Metalliferous Mine Tailings

Honeker, Linnea Katherine, Honeker, Linnea Katherine January 2017 (has links)
Phytostabilization offers a less expensive alternative to traditional cap and plant methods for containing metalliferous mine tailings to prevent wind erosion and contamination of nearby communities and the environment. However, plant establishment during phytostabilization of pyritic legacy mine tailings in semiarid regions is challenging due to particularly extreme conditions including low pH, low organic carbon, low nutrients, and high toxic metal(loid) concentrations. Microorganisms drive major biogeochemical cycles in soils, however, the roles microorganisms play at the root – soil interface during phytostabilization, particularly in relation to plant health and metal immobilization, are not yet fully understood. The aims of this dissertation are to focus on bacterial communities associated with the roots of buffalo grass used in the phytostabilization of pyritic metalliferous mine tailings to: i) characterize bacterial diversity and communities of rhizosphere and bulk substrate, ii) delineate associations between rhizoplane bacterial colonization patterns and environmental and plant status parameters, and iii) develop an in situ method to visually assess associations between roots, bacteria, and metals. Key findings indicate that after addition of a compost amendment to alleviate the plant-growth inhibiting characteristics of mine tailings, rhizosphere and bulk substrate contain a diverse, plant-growth supporting bacterial community. As substrate re-acidifies due to compost erosion, an emergence of an iron (Fe)- and sulfur (S)-oxidizer and Fe-reducer dominated, less diverse community develops in the bulk and rhizosphere substrate, thus posing a threat to successful plant establishment. However, even at low pH, some plant-growth-promoting bacteria are still evident in the rhizosphere. On the rhizoplane (root surface), the relative abundance of metabolically active bacteria was positively correlated with plant health, verifying the strong association between plant health and bacteria. Furthermore, pH showed a strong association with the relative abundance of Alphaproteobacteria and Gammaproteobacteria on the rhizoplane. In relation to microbe-metal interactions on the root surface, results showed that Actinobacteria and Alphaproteobacteria colocalized with Fe-plaque and arsenic (As) contaminant on the root surface, indicating their potential role in adsorbing or cycling of these metal(loid)s. Developing a more thorough understanding of bacteria-root-metal interactions in relation to plant health and metal immobilization can help to improve phytostabilization efforts and success.
47

Dinâmica do microbioma da rizosfera de mandacaru na Caatinga / Dynamics of mandacaru rhizosphere microbiome in the Caatinga

Ferreira, Clederson 28 February 2014 (has links)
O atual cenário mundial das mudanças climáticas, somado ao aquecimento global e ao aumento das áreas em processo de desertificação tem impactado diretamente nos padrões de produção agrícola. A Caatinga é um bioma que só ocorre no Brasil e possui um clima semiárido, quente e de baixa pluviosidade, sendo que na estação seca a temperatura do solo pode chegar até 60ºC. A Caatinga apresenta uma grande riqueza de ambientes e espécies, e boa parte dessa diversidade não é encontrada em nenhum outro bioma. Uma característica muito peculiar da Caatinga é a existência de duas estações bem contrastantes durante o ano, o inverno caracterizado por ser a estação da chuva e o verão a época da seca. A vegetação é composta por Euforbiáceas, Bromeliáceas e Cactáceas, dentre as quais destacam-se o Cereus jamacaru (mandacaru), Pilosocereus gounellei (xique-xique) e Melocactus sp. (cabeça-de-frade). O mandacaru planta que sobrevive às altas temperaturas e baixa disponibilidade de água da Caatinga possui adaptações morfológicas estruturais que contribuem para a sobrevivência da mesma. Além dessas adaptações a comunidade microbiana da rizosfera foi estudada para descobrir quais micro-organismos presentes nesse ambiente auxiliam na manutenção do hospedeiro frente a essas condições adversas. Assim como, quais grupos e funções são mais abundantes nessas condições. Nesse estudo foi feito o sequenciamento parcial do gene 16S rRNA e do DNA total da rizosfera de mandacaru. A comunidade bacteriana foi bem representada pelos filos Actinobacteria, Proteobacteria e Acidobacteria, sendo que o filo Actinobacteria foi mais abundante na seca de acordo com o sequenciamento metagenômico e o filo Acidobacteria foi mais abundante no período de chuva. Em geral o sequenciamento do gene 16S rRNA, indicou que Actinobacteria e Proteobacteria são os filos mais abundantes e os genes relacionados às funções de resistência a doenças foram mais abundantes na estação seca, enquanto genes relacionados ao metabolismo do nitrogênio foram mais abundantes durante o período chuvoso, revelando assim, um pouco do potencial que o microbioma da rizosfera de mandacaru possui para auxiliar a planta hospedeira. / The present world scenario of climate change, global warming and the increase in areas undergoing desertification, have directly impacted on current patterns of agricultural crop production. The Caatinga is a specific Brazilian biome because of its semi-arid climate, hot and low rainfall, and the temperature that reaches the 60°C in the dry season. The Caatinga has a huge biodiversity and much of its diversity is not found in any other biome. A peculiar characteristic of the Caatinga biome is the occurrence of two very contrasting seasons during the year, the winter which is characterized by a rainy season and summer the dry season. The vegetation is composed by Euphorbiaceae , Bromeliaceae and Cactaceae, represented by Cereus jamacaru (Mandacaru) Pilosocereus gounellei (xique-xique) and Melocactus sp. (head-to-brother). Mandacaru is the plant that can survive through the specifics climate conditions of the Caatinga biome such as high temperatures and low water availability and this is probably due to some structural and morphological adaptations that contribute to its survival. Therefore, we assessed which microorganisms are associated with the plant rhizosphere, and which microbial groups contribute to the maintenance of the host throughout these adverse conditions. Also, we identified which are the most abundant microbial groups in these conditions and which microbial functions are more abundant in both evaluated seasons. Thus the present study assessed the mandacaru rhizosphere microbiome through a partial 16S rRNA gene sequencing and metagenomic sequencing. The bacterial community was well represented by the phyla Actinobacteria, Proteobacteria and Acidobacteria. The Actinobacteria was the most abundant microbial phyla in the dry season according to shotgun sequencing while the Acidobacteria was the most abundant microbial phyla in the rainy season. Overall, the 16S rRNA sequencing indicated that Actinobacteria and Proteobacteria were the most abundant groups and additionally, and genes related to disease resistance functions were more abundant in the dry season. Genes related to nitrogen metabolism were more abundant during the rainy season revealing some of the potential traits that the mandacaru can explore from its microbiome.
48

Dinâmica do microbioma da rizosfera de mandacaru na Caatinga / Dynamics of mandacaru rhizosphere microbiome in the Caatinga

Clederson Ferreira 28 February 2014 (has links)
O atual cenário mundial das mudanças climáticas, somado ao aquecimento global e ao aumento das áreas em processo de desertificação tem impactado diretamente nos padrões de produção agrícola. A Caatinga é um bioma que só ocorre no Brasil e possui um clima semiárido, quente e de baixa pluviosidade, sendo que na estação seca a temperatura do solo pode chegar até 60ºC. A Caatinga apresenta uma grande riqueza de ambientes e espécies, e boa parte dessa diversidade não é encontrada em nenhum outro bioma. Uma característica muito peculiar da Caatinga é a existência de duas estações bem contrastantes durante o ano, o inverno caracterizado por ser a estação da chuva e o verão a época da seca. A vegetação é composta por Euforbiáceas, Bromeliáceas e Cactáceas, dentre as quais destacam-se o Cereus jamacaru (mandacaru), Pilosocereus gounellei (xique-xique) e Melocactus sp. (cabeça-de-frade). O mandacaru planta que sobrevive às altas temperaturas e baixa disponibilidade de água da Caatinga possui adaptações morfológicas estruturais que contribuem para a sobrevivência da mesma. Além dessas adaptações a comunidade microbiana da rizosfera foi estudada para descobrir quais micro-organismos presentes nesse ambiente auxiliam na manutenção do hospedeiro frente a essas condições adversas. Assim como, quais grupos e funções são mais abundantes nessas condições. Nesse estudo foi feito o sequenciamento parcial do gene 16S rRNA e do DNA total da rizosfera de mandacaru. A comunidade bacteriana foi bem representada pelos filos Actinobacteria, Proteobacteria e Acidobacteria, sendo que o filo Actinobacteria foi mais abundante na seca de acordo com o sequenciamento metagenômico e o filo Acidobacteria foi mais abundante no período de chuva. Em geral o sequenciamento do gene 16S rRNA, indicou que Actinobacteria e Proteobacteria são os filos mais abundantes e os genes relacionados às funções de resistência a doenças foram mais abundantes na estação seca, enquanto genes relacionados ao metabolismo do nitrogênio foram mais abundantes durante o período chuvoso, revelando assim, um pouco do potencial que o microbioma da rizosfera de mandacaru possui para auxiliar a planta hospedeira. / The present world scenario of climate change, global warming and the increase in areas undergoing desertification, have directly impacted on current patterns of agricultural crop production. The Caatinga is a specific Brazilian biome because of its semi-arid climate, hot and low rainfall, and the temperature that reaches the 60°C in the dry season. The Caatinga has a huge biodiversity and much of its diversity is not found in any other biome. A peculiar characteristic of the Caatinga biome is the occurrence of two very contrasting seasons during the year, the winter which is characterized by a rainy season and summer the dry season. The vegetation is composed by Euphorbiaceae , Bromeliaceae and Cactaceae, represented by Cereus jamacaru (Mandacaru) Pilosocereus gounellei (xique-xique) and Melocactus sp. (head-to-brother). Mandacaru is the plant that can survive through the specifics climate conditions of the Caatinga biome such as high temperatures and low water availability and this is probably due to some structural and morphological adaptations that contribute to its survival. Therefore, we assessed which microorganisms are associated with the plant rhizosphere, and which microbial groups contribute to the maintenance of the host throughout these adverse conditions. Also, we identified which are the most abundant microbial groups in these conditions and which microbial functions are more abundant in both evaluated seasons. Thus the present study assessed the mandacaru rhizosphere microbiome through a partial 16S rRNA gene sequencing and metagenomic sequencing. The bacterial community was well represented by the phyla Actinobacteria, Proteobacteria and Acidobacteria. The Actinobacteria was the most abundant microbial phyla in the dry season according to shotgun sequencing while the Acidobacteria was the most abundant microbial phyla in the rainy season. Overall, the 16S rRNA sequencing indicated that Actinobacteria and Proteobacteria were the most abundant groups and additionally, and genes related to disease resistance functions were more abundant in the dry season. Genes related to nitrogen metabolism were more abundant during the rainy season revealing some of the potential traits that the mandacaru can explore from its microbiome.
49

Variation in concentrations of organochlorine pesticides in crop rhizosphere soils. / CUHK electronic theses & dissertations collection

January 2006 (has links)
In soils spiked with gamma-HCH & DDT, and transplanted with wheat, the differences of gamma-HCH between the rhizosphere and non-rhizosphere soils increased with time, reached the peak on 30th sampling day, and then decreased with time. In the rhizosphere and non-rhizosphere soils, pp'-DDE/SigmaDDTs, op'-DDD/SigmaDDTs and pp'-DDD/SigmaDDTs increased with time; whilst op'-DDT/SigmaDDT and pp'-DDT/SigmaDDT decreased with time. The wheat, corn and soybean rhizosphere soils differed greatly in soil properties, but it was hard to conclude the effect of crop roots on the variation in concentration of gamma-HCH, p,p'-DDE, p,p'-DDD and p,p'-DDT in the rhizosphere soils except for root accumulation and translocation. / In the control, wheat and corn rhizosphere soils, the n-hexane extracted fraction of gamma-HCH, DDE, DDD and DDT decreased with time whereas the hexane/acetone extracted fraction increased with time after the 20th sampling day. The n-hexane extracted forms were higher in the rhizosphere soils than those in the non-rhizosphere soils, while the hexane/acetone extracted forms were lower in the rhizosphere soils than in the non-rhizosphere soils. / In the wheat, corn rhizosphere soils and the control, the concentration of NO3-N showed a significant negative correlation with n-hexane extracted DDE, DDD and DDT residues and a significant positive correlation with hexane/acetone extracted residues. The concentration of ammonium nitrogen (NH4-N) showed a significant negative correlation with hexane extracted gamma-HCH, DDE, DDD and DDT residues in the control, corn and wheat rhizosphere soils: but only had significant positive correlation with the n-hexane/acetone extracted fraction in the corn rhizosphere soil. The positive correlations between the n-hexane extracted residues of the target pesticides and soil OC were seldom significant in the control, sometimes significant in the wheat rhizosphere soils, and always strong and significant in the corn rhizosphere soils. The correlation of the n-hexane/acetone extracted residues with soil OC was positive and sometimes significant in the wheat rhizosphere soils, and significant and negative in the corn rhizosphere soils. The results indicated that the concentrations of different OCPs extracted from were strongly influenced by nutritional conditions and soil organic carbon. / Organic carbon (OC), dissolved organic carbon (DOC) and cultivation period were tested to explore their potential effects on target OCPs in the rhizosphere soils. The concentration of the target OCPs in the wheat rhizosphere soils increased proportionally to soil OC, whilst the uptake of OCPs by wheat roots and further translocation to the aboveground part were inversely proportional to soil OC. DOC only showed a negative correlation with concentration of p,p'-DDE and p,p'-DDT in the corn rhizosphere soils. After a longer root-soil interaction, roots had a more significant effect on the concentration of OCPs in the rhizosphere soils closer to the root surface. / The variation of different forms of OCPs in rhizosphere soils and their relationships with nitrogen nutrients and organic carbon were studied. / Variations in concentrations of organochlorine pesticide (OCP) residues in the rhizosphere soils were evaluated using rhizoboxes. A sequential extraction method was developed to study the fractionation and extractability of OCPs in rhizosphere soils. The key findings are as follows: / Zhu Xuemei. / "September 2006." / Adviser: Kin Che Lam. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1532. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 265-288). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
50

Gene Networks Involved in Competitive Root Colonization and Nodulation in the <em>Sinorhizobium meliloti-Medicago truncatula</em> Symbiosis

VanYperen, Ryan D. 01 December 2015 (has links)
The rhizobia-legume symbiosis is the most agriculturally significant source of naturally fixed nitrogen, accounting for almost 25% of all biologically available nitrogen. Rhizobia-legume compatibility restrictions impose limits on symbiotic nitrogen fixation. In many cases, the molecular basis for symbiotic compatibility is not fully understood. The signals required for establishing a symbiotic partnership between nitrogen-fixing bacteria (e.g. Sinorhizobium meliloti) and leguminous plants (e.g. Medicago truncatula) have been partially characterized at the molecular level. The first stage of successful root colonization is competitive occupation of the rhizosphere (which is poorly understood). Here, the bacteria introduce themselves as potential symbiotic partners through the secretion of glycolipid "Nod" factors. In response, the host facilitates a more exclusive mode of colonization by the formation of a root nodule – a new organ capable of hosting dense intracellular populations of symbiotic rhizobia for nitrogen fixation. This dissertation reports the exhaustive identification of S. meliloti genes that permit competitive colonization of the M. truncatula rhizosphere, and includes a mechanistic study of one particular bacterial signaling pathway that is crucial for both rhizosphere colonization and nodulation. I have made use of Tn-seq technology, which relies on deep sequencing of large transposon mutant libraries to monitor S. meliloti genotypes that increase or decrease in relative abundance after competition in the rhizosphere. This work included the collaborative development of a new computational pipeline for performing Tn-seq analysis. Our analysis implicates a large ensemble of bacterial genes and pathways promoting rhizosphere colonization, provides hints about how the host plant shapes this environment, and opens the door for mechanistic studies about how changes in the rhizosphere are sensed and interpreted by the microbial community. Notable among these sensory pathways is a three-protein signaling system, consisting of FeuQ, FeuP, and FeuN, which are important for both rhizosphere colonization and nodule invasion by S. meliloti. The membrane-bound sensor kinase FeuQ can either positively or negatively influence downstream transcription of target genes by modulating the phosphorylation state of the transcriptional activator FeuP. FeuN, a small periplasmic protein, inhibits the positive mode of FeuPQ signaling by its direct interaction with the extracellular region of FeuQ. FeuN is essential for S. meliloti viability, underscoring the vital importance of controlling the activity of downstream genes. In summary, I have employed several powerful genetic, genomic, computational, and biochemical approaches to uncover a network of genes and pathways that coordinate root colonization and nodulation functions.

Page generated in 0.4421 seconds