• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 3
  • 1
  • Tagged with
  • 33
  • 33
  • 10
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Das Photoreaktionszentrum aus Rhodobacter sphaeroides als Modellmembranprotein zur Reinigung, Rekonstitution in Liposomen aus ungewöhnlichen Phospholipiden, Charakterisierung und heterologen Expression

Peters, Heinz. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Stuttgart. / Gedr. Ausg. im Inst. für Technische Biochemie der Univ. Stuttgart.
12

Coordination of Carbon Dioxide and Nitrogen Metabolism in Rhodobacter sphaeroides

Farmer, Ryan Michael 23 July 2013 (has links)
No description available.
13

Analysis of the Role of Rhodobacter sphaeroides CrpO in Tolerance to NaCl

Retamal, Susana B. 12 November 2010 (has links)
No description available.
14

Hydrogen production by Rhodobacter sphaeroides and its analysis by metabolic flux balancing

Chongcharoentaweesuk, Pasika January 2014 (has links)
There is a global need for sustainable, renewable and clean energy sources. Microbial production of hydrogen from renewable carbon sources, biorefinery compounds such as succinic acid or from food and drinks industry waste meets all these criteria. Although it has been studied for several decades, there is still no large scale bio-hydrogen production because the rate and yield of hydrogen production are not high enough to render the process economical. The dependency of biological hydrogen production of incipient light energy is also an important factor affecting economics. In order to improve the prospects of biohydrogen as a renewable and sustainable energy alternative, the genetic and process engineering approaches should be helped and targeted by metabolic engineering tools such as metabolic flux balance analysis. The overall aim of this research was the development of computational metabolic flux balance analysis for the study of growth and hydrogen production in Rhodobacter sphaeroides. The research reported in this thesis had two approaches; experimental and computational. Batch culture experiments for growth and hydrogen production by Rhodobacter sphaeroides were performed with either malate or succinate as carbon source and with glutamate as the nitrogen source. Other conditions investigated included; i) aerobic and anaerobic growth, ii) light and dark fermentation for growth, and iii) continuous light and cycled light/dark conditions for hydrogen production. The best growth was obtained with succinate under anaerobic photoheterotrophic conditions with the maximum specific growth rate of 0.0467 h– 1, which was accompanied with the maximum specific hydrogen production rate of 1.249 mmol(gDW.h)– 1. The range of the photon flux used was 5.457 - 0.080 mmol(gDW.h)– 1. The metabolic flux balance model involved 218 reactions and 176 metabolites. As expected the optimised specific rates of growth and hydrogen production were higher than those of the experimental values. The best prediction was for hydrogen production on succinate with computed specific hydrogen production rates in the range of 2.314 - 1.322 mmol(gDW.h)– 1. Sensitivity analyses indicated that the specific growth rate was affected by the nitrogen source uptake rate under aerobic dark condition whereas the flux of protein formation had the largest effect on the specific growth rate under anaerobic light condition.
15

Regulation of the expression and positioning of chemotaxis and motor proteins in Rhodobacter sphaeroides

Wilkinson, David Arthur January 2010 (has links)
Bacteria achieve directed motion through their environments by integrating propulsion with chemical detection in the process of chemotaxis. Central to this process are the macromolecular protein structures of the flagellar motor and the chemoreceptor arrays, which are responsible for motility and chemical sensing, respectively. These protein complexes localise to different discrete subcellular positions in different bacterial species, and their correct subcellular localisation is often essential to their function. In the monotrichous α‐proteobacterium Rhodobacter sphaeroides, the flagellum is subpolar and two distinct sets of chemotaxis proteins localise to discrete polar and cytoplasmic positions within the cell. In this study, the development of software for the analysis of fluorescent microscopy images allowed cellular morphologies and the localisation and distribution of the chemoreceptor arrays of R.sphaeroides to be characterised in detail, showing that protein partitioning at cell division results in an asymmetric separation of both cytoplasmic and membrane‐bound protein components between daughter cells. The design of a fluorescence‐based assay for the analysis of gene expression assisted in demonstrating that expression of both the chemotaxis and motor genes of R.sphaeroides is regulated by the sigma factor, FliA, and its inhibitor, FlgM. FliA was then used to achieve varying expression of the chemotaxis genes, and the concentration dependence of array clustering was explored in microscopy images, revealing important differences between cluster formation in R.sphaeroides and other species. Additionally, FliA was identified as a regulator of flagellar number in R.sphaeroides, controlling a negative feedback‐loop in the hierarchy of flagellar assembly that represses flagellar formation upon secretion of FlgM. The complex regulatory pathway controlling R.sphaeroides flagellar assembly is the first identified system where completion of a single flagellum directly inhibits the production of a second, a mechanism that may be important to many monotrichous bacterial species.
16

Das Photoreaktionszentrum aus Rhodobacter sphaeroides als Modellmembranprotein zur Reinigung, Rekonstitution in Liposomen aus ungewöhnlichen Phospholipiden, Charakterisierung und heterologen Expression

Peters, Heinz. January 2001 (has links)
Stuttgart, Univ., Diss., 2001.
17

Optimization production conditions of photosynthetic purple bacteria biomass at pilot scale to remove sulphide from aquaculture pond

Do, Thi Lien, Do, Thi To Uyen, Le, Thi Nhi Cong, Hoang, Phuong Ha, Cung, Thi Ngoc Mai 16 January 2019 (has links)
For the purpose of sulphide removal in aquaculture ponds, three strains (name: TH21, QN71, QN51) were isolated and selected with the highest sulphide removal activity from Thanh Hoa and Quang Ninh coastal zones. These strains have identified and tested in a number of aquaculture ponds in different areas with good water quality results. With the objective of purple non sulfur bacteria biomass production containing 3 selected strains for wide application and suitable price for farmers, in this study, we study on optimum conditions of mixed purple non sulfur bacteria biomass production at pilot scale. The results showed that the sources of substrates were soybean meal (1g/l) and acetate (0.5g/l). These substrates are low cost, easy to find, convenient in large culture. The mixture of photosynthetic bacteria can be cultured in glass tanks, under micro aerobic and natural lighting conditions that produce highly concentrated photosynthetic bacteria and lowest rest media. / Nhằm mục tiêu xử lý sulphide trong môi trường nuôi trồng thủy sản, chúng tôi đã phân lập và lựa chọn được ba chủng vi khuẩn tía quang hợp có khả năng loại bỏ sulphide cao nhất ký hiệu TH21, QN71, QN52 từ các vùng ven biển Thanh Hóa và Quảng Ninh. Các chủng này đã được định loại và thử nghiệm tại một số ao nuôi thủy sản ở các vùng khác nhau thu được kết quả tốt về chất lượng nước. Để tạo chế phẩm vi khuẩn tía quang hợp từ 3 chủng lựa chọn được ứng dụng rộng rãi và có giá thành phù hợp cho nông hộ, trong nghiên cứu này, chúng tôi nghiên cứu tối ưu hóa các điều kiện sản xuất sinh khối hỗn hợp 3 chủng vi khuẩn tía quang hợp ở quy mô pilot. Kết quả cho thấy đã tìm kiếm được nguồn cơ chất là bột đậu tương (1g/l) và acetate (0.5g/l) là những chất có giá thành thấp, dễ tìm kiếm, thuận tiện trong nhân nuôi ở quy mô lớn. Hỗn hợp vi khuẩn tía quang hợp có thể nuôi trong các bể kính, ở điều kiện vi hiếu khí, có ánh sáng chiếu tự nhiên có thể sản xuất được chế phẩm vi khuẩn tía quang hợp có mật độ cao, cơ chất còn lại sau sản xuất là ít nhất.
18

The structure, function and specificity of the Rhodobacter sphaeroides membrane-associated chemotaxis array

Allen, James Robert January 2014 (has links)
Bacterial chemotaxis is the movement of bacteria towards or away from chemical stimuli in the surrounding media. Bacteria respond to chemotactic signals through chemoreceptors which bind specific ligands and transduce signals through a modified two-component system. Typical chemoreceptors bind a ligand in the periplasm and signal across the inner membrane to the cytoplasmic chemosensory array through the inner membrane. Bacterial chemoreceptors must integrate multiple signals within an array of different receptor homologues to a single output. Chemoreceptors act cooperatively to allow a rapid signal spread across the array and large signal gain. Chemoreceptors adapt to a signal by chemical modification of their cytoplasmic domains in order respond across a wide range of effector concentrations. How bacterial chemoreceptors transduce signals through the inner membrane, integrate multiple effector responses, signal cooperatively and adapt to result in a single output signal is not currently fully known. In Rhodobacter sphaeroides, additional complexity arises from the presence of multiple homologues of various chemotactic components, notably the array scaffold protein CheW. Decoding this signalling mechanism and heterogeneity involved in this system is important in decoding the action of a biological system, with implications for biotechnology and synthetic biology. This study used the two model systems Escherichia coli and R. sphaeroides to analyse the mechanism of signalling through bacterial chemoreceptors. Rational design of activity-shifting chemoreceptor mutations was undertaken and these variants were analysed in phenotypic and fluorescence localisation studies. Molecular-dynamics simulations showed an increase in flexibility of chemoreceptors corresponds to a decrease in kinase output activity, which was determined by the computational tracking of bacteria free-swimming in media. Fluorescence recovery after photobleaching was used to show that this increase in flexibility results in a decrease in binding of receptors to their array scaffold proteins. A two-hybrid screen also suggested that inter-receptor affinity is also likely to decrease. These results show that signalling through chemoreceptors is likely through a mechanism involving the selective flexibility of chemoreceptor cytoplasmic domains. Analysis of R. sphaeroides chemoreceptors and CheW scaffold proteins in E. coli showed that it should be possible to design, from the bottom-up, a functional bacterial chemotaxis system in order to analyse individual protein specificity. Expression of R. sphaeroides MCPs in this E. coli system show the reconstitution of a chemotactic array, but not one capable of signalling specifically to proposed attractants. Results gained from this system suggest the R. sphaeroides CheW proteins are not homologous and their differential binding affinities may allow array activity 'fine-tuning'.
19

Expression Analysis Of Nitrogenase Genes In Rhodobacter Sphaeroides O.u.001 Grown Under Different Physiological Conditions

Akkose, Sevilay 01 February 2008 (has links) (PDF)
Hydrogen has an extensive potential as a clean and renewable energy source. Photosynthetic, non-sulphur, purple bacteria, Rhodobacter sphaeroides O.U.001 produces molecular hydrogen by nitrogenase enzyme. Nitrogenase enzyme is encoded by nifHDK genes and expression of the structural genes, nifHDK, is controlled by NifA which is encoded by nifA gene. The transcription of nifA is under the control of Ntr system and product of prrA gene. Relationship between the genes that have roles in nitrogenase synthesis should be understood well to increase biological hydrogen production. In this work, expression levels of nitrogenase encoding nifH and control genes nifA, prrA were examined at different physiological conditions. In addition to modifications in expression levels, changes in hydrogen production and growth capacity were also investigated in response to different concentrations of ammonium source, oxygen and different light intensities. In this study, it was found that increasing concentrations of ammonium chloride caused decrease in hydrogen production. Glutamate containing medium had the capacity for higher hydrogen production. The expression levels of nifH and nifA genes decreased with the increase in concentrations of ammonium chloride. There was a negative correlation between the expression levels of prrA gene and its target, nifA gene. Hydrogen production was observed even in aerobic conditions of the same media compositions. It was observed that different culture media had changing growth and hydrogen production capabilities at different light intensities. There was no direct proportion between the expression levels of nifH gene and amount of hydrogen at different light intensities.
20

Improvement Of Biohydrogen Production By Genetic Manipulations In Rhodobacter Sphaeroides O.u.001

Kars, Gokhan 01 October 2008 (has links) (PDF)
Rhodobacter sphaeroides O.U.001 is a purple non-sulphur bacterium producing hydrogen under photoheterotrophic, nitrogen limited conditions. Hydrogen is produced by Mo-nitrogenase but substantial amount of H2 is reoxidized by a membrane bound uptake hydrogenase. In this study, hydrogen production and the expression of structural nitrogenase genes were investigated by varying molybdenum and iron ion concentrations. These two elements are found in the structure of Mo-nitrogenase and they are important for functioning of the enzyme. The results showed that hydrogen production and nifD gene expression increased upon increase in molybdenum concentration. Increasing iron concentration had also positive effect on hydrogen production and nifK gene expression. To improve the hydrogen producing capacity of R. sphaeroides O.U.001, hupSL genes encoding uptake hydrogenase were disrupted in two different methods. In the first method, hup genes were disrupted by gentamicin resistance gene insertion. In the second method, part of the hup gene was deleted without using antibiotic resistance gene. The wild type and the hup- mutant cells showed similar growth patterns but substantially more hydrogen was produced by the mutant cells. The genes coding for hox1 hydrogenase of Thiocapsa roseopersicina was aimed to be expressed in R. sphaeroides O.U.001 to produce H2 under nitrogenase repressed and mixotrophic conditions. The hox1 hydrogenase genes of T. roseopersicina were cloned and transferred to R. sphaeroides. Although the cloning was successful, the expression of hydrogenase was not achieved by using either the native promoter of hox1 hydrogenase or the crtD promoter of T. roseopersicina.

Page generated in 0.093 seconds