Spelling suggestions: "subject:"pseudomonas.""
11 |
Development of Rhodopseudomonas palustris as a chassis for biotechnological applicationsLaing, Ruth Mary Louise January 2018 (has links)
The recent surge in biodiesel production has resulted in a huge surplus of crude glycerol, a by-product of the process to the level of 10% by weight. This is turn has caused the price of glycerol to fall dramatically, and there are now few economically viable channels for using this resource: waste glycerol is usually combusted. Therefore, much interest has arisen in the possibility of making use of glycerol with biotechnology, as this would not only be a more efficient use of resources but also make biodiesel itself more commercially viable. The purple bacterium Rhodopseudomonas palustris is able to metabolize glycerol through photofermentation and thereby produce hydrogen, a commercially useful commodity. R. palustris is of particular interest for this purpose as, in contrast to many other species which have been investigated with a view to fermenting glycerol, it is highly tolerant of crude glycerol. The feedstock requires little purification or dilution to be made suitable for cultivation of R. palustris. Furthermore, the hydrogen gas produced by R. palustris when grown on glycerol is of high purity, and the organism's great metabolic diversity suggests it may be a useful strain for remediation of other waste materials. However, much groundwork is needed to establish R. palustris as a viable chassis organism for biotechnological purposes. This work sets out to establish optimal conditions for cultivating R. palustris in the laboratory, including the design of a suitable batch photobioreactor system. It also determines optimal conditions for electroporation of R. palustris for the purpose of knocking out endogenous genes or introducing heterologous genes. Furthermore, the introduction of heterologous genes is attempted in order to demonstrate the possibility of producing other high-value compounds with R. palustris, and several deletion strains with potential benefits for hydrogen production are created. Finally, several existing deletion strains are investigated to establish their suitability as chassis strains for further genetic manipulation.
|
12 |
Photoaffinity Labeling of the Antimycin Binding Site in Rhodopseudomonas sphaeroidesWilson, Emily 01 May 1984 (has links)
The purpose of this study was to identify the site of interaction of antimycin with the ubiquinone-cytochrome b-c1 oxidoreductase in the photosynthetic bacteria, Rhodopseudomonas sphaeroides. To accomplish this goal, three areas of research were undertaken: the synthesis of a radiolabeled, photoaffinity analog of antimycin, identification of the inhibitory characteristics of this analog, and the photoaffinity labeling of the antimycin binding site. All three areas were accomplished.
The major finding of this study was the identification of an 11,000 dalton polypeptide as the predominantly labeled protein. Although this polypeptide was not exclusively labeled, it was consistently labeled and showed competition with antimycin. These results are consistent with a similar study performed by das Gupta and Rieske (1973) with a mitochondrial preparation.
These results are not conclusive, but do show several interesting points. First, cytochrome b is not the only site of interaction of antimycin with the ubiquinone~cytochrome b-c1 region of the electron transport chain. Secondly, an 11,000 dalton polypeptide is an important component of this protein complex. The function of this polypeptide is unknown, but should provide interesting research for future studies.
|
13 |
Structural and Functional Characterization of the Enzymes Involved in the Menaquinone Biosynthesis and Benzoate Degradation / Strukturelle und funktionelle Charakterisierung von Enzymen, die an der Menaquinon-Biosynthese und der Biodegradation von Benzoat beteiligt sindMishra, Shambhavi January 2013 (has links) (PDF)
The present work illustrates the structural and biochemical characterization of two diverse proteins, BadI and MenD from Rhodopseudomonas palustris and Staphylococcus aureus, respectively.
BadI or 2-ketocyclohexanecarboxyl-CoA is one of the key enzymes involved in the anaerobic degradation of aromatic compounds. The degradation of aromatic compounds is a vital process for the maintenance of the biogeochemical carbon cycle and bioremediation of xenobiotic compounds, which if present at higher concentrations can cause potential hazards to humans. Due to the relatively inert nature of aromatic compounds, enzymes catalyzing their degradation are of special interest for industrial applications. BadI is one of the key enzymes involved in the anaerobic degradation of aromatic compounds into an aliphatic moiety.
The major focus of this study was to provide mechanistic insights into the reaction catalyzed by BadI. BadI belongs to the crotonase superfamily and shares high sequence homology with the family members of MenB or dihydroxynaphthoate synthase. BadI is known to catalyze the cleavage of the cyclic ring of 2-ketocyclohexane carboxyl-CoA by hydrolyzing the C-C bond leading to the formation of the aliphatic compound pimelyl CoA. On the other hand MenB catalyzes the condensation reaction of o-succinylbenzoyl-CoA to dihydroxylnaphthoyl-CoA. A comprehensive amino acid sequence analysis between BadI and MenB showed that the active site residues of MenB from Mycobacterium tuberculosis (mtMenB) are conserved in BadI from Rhodopseudomonas palustris. MenB is involved in the menaquinone biosynthesis pathway and is a potential drug target against Mycobacterium tuberculosis as it has no known human homologs. Due to the high homology between MenB and BadI and the inability to obtain MenB-inhibitor complex structures we extended our interest to BadI to explore a potential substitute model for mtMenB as a drug target.
In addition, BadI possesses some unique mechanistic characteristics. As mentioned before, it hydrolyzes the substrate via a retro Dieckmann’s reaction contrasting its closest homolog MenB that catalyzes a ring closing reaction through a Dieckmann’s reaction. Nevertheless the active site residues in both enzymes seem to be highly conserved. We therefore decided to pursue the structural characterization of BadI to shed light on the similarities and differences between BadI and MenB and thereby provide some insights how they accomplish the contrasting reactions described above.
We determined the first structures of BadI, in its apo and a substrate mimic bound form. The crystal structures revealed that the overall fold of BadI is similar to other crotonase superfamily members. However, there is no indication of domain swapping in BadI as observed for MenB. The absence of domain swapping is quite remarkable because the domain swapped C-terminal helical domain in MenB provides a tyrosine that is imperative for catalysis and is also conserved in the BadI sequence. Comparison of the active sites revealed that the C-terminus of BadI folds onto its core in such a way that the conserved tyrosine is located in the same position as in MenB and can form interactions with the ligand molecule. The structure of BadI also confirms the role of a serine and an aspartate in ligand interaction, thus validating that the conserved active site triad participates in the enzymatic reaction. The structures also reveal a noteworthy movement of the active site aspartate that adopts two major conformations. Structural studies further illuminated close proximity of the active site serine to a water and chlorine molecule and to the carbon atom at which the carbonyl group of the true substrate would reside. Biochemical characterization of BadI using enzyme kinetics validated that the suggested active site residues are involved in substrate interaction. However, the role of these residues is very distinct, with the serine assuming a major role. Thus, the present work ascertain the participation of putative active site residues and demonstrates that the active site residues of BadI adopt very distinctive roles compared to their closest homolog MenB.
The MenD protein also referred to as SEPHCHC (2-succinyl-5-enolpyruvyl-6- hydroxy-3-cyclohexene-1-carboxylic acid) synthase is one of the enzymes involved in menaquinone biosynthesis in Staphylococcous aureus. Though S. aureus is usually considered as a commensal it can act as a remarkable pathogen when it crosses the epithelium, causing a wide spectrum of disorders ranging from skin infection to life threatening diseases. Small colony variants (SCVs), a slow growing, small sized subpopulation of the bacteria has been associated with persistent, recurrent and antibiotic resistant infections. These variants show autotrophy for thiamine, menaquinone or hemin. Menaquinone is an essential component in the electron transport pathway in gram-positive organisms. Therefore, enzymes partaking in this pathway are attractive drug targets against pathogens such as Mycobacterium tuberculosis and Bacillus subtilis. MenD, an enzyme catalyzing the first irreversible step in the menaquinone biosynthetic pathway has been implicated in the SCV phenotype of S. aureus. In the present work we explored biochemical and structural properties of this important enzyme.
Our structural analysis revealed that despite its low sequence identity of 28%, the overall fold of staphylococcal MenD (saMenD) is similar to Escherichia coli MenD (ecMenD) albeit with some significant disparities. Major structural differences can be observed near the active site region of the protein and are profound in the C-terminal helix and a loop near the active site. The loop contains critical residues for cofactor binding and is well ordered only in the ecMenD-ThDP structure, while in the apo and substrate bound structures of ecMenD the loop is primarily disordered. In our saMenD structure the loop is for the first time completely ordered in the apo form and displays a novel conformation of the cofactor-binding loop. The loop adopts an unusual open conformation and the conserved residues, which are responsible for cofactor binding are located too far away to form a productive complex with the cofactor in this conformation. Additionally, biochemical studies in conjugation with the structural data aided in the identification of the substrate-binding pocket and delineated residues contributing to its binding and catalysis. Thus the present work successfully divulged the unique biochemical and structural characteristics of saMenD. / Die vorliegende Arbeit befasst sich mit der strukturellen und biochemischen Charakterisierung der beiden unterschiedlichen bakteriellen Enzyme BadI von Rhodopseudomonas palustris und MenD von Staphylococcus aureus.
Die 2-Ketocyclohexancarboxyl-CoA-Hydrolase BadI ist eines der Schlüsselenzyme des anaeroben Abbaus aromatischer Verbindungen. Der Abbau aromatischer Verbindungen ist essentiell für die Aufrechterhaltung des biogeochemischen Kohlenstoffkreislaufs und der biologischen Beseitigung von Xenobiotika, welche in höheren Konzentrationen eine Gefahr für den menschlichen Organismus darstellen können. Wegen des inerten Charakters aromatischer Verbindungen sind Enzyme, welche deren Abbau katalysieren, von besonderem Interesse für industrielle Anwendungen. BadI ist eines der Schlüsselenzyme für den anaeroben Abbau aromatischer Verbindungen zu aliphatischen Gruppen.
Das Hauptaugenmerk dieses Projekts lag auf der Aufklärung des Reaktionsmechanismus, welcher von BadI katalysiert wird. BadI gehört zur Überfamilie der Crotonasen und zeigt hohe Sequenzhomologie mit der zugehörigen Dihydroxynaphthoat-Synthase MenB. Durch die Hydrolyse einer C-C Bindung katalysiert BadI den Schnitt des zyklischen Rings von 2-Ketocyclohexancarboxyl-CoA, welcher zur Bildung der aliphatischen Verbindung Pimelyl-CoA führt. MenB, andererseits, katalysiert die Kondensationsreaktion von O-Succinylbenzyl-CoA zu Dihydronaphthoyl-CoA. Ein umfassender Aminosäuresequenzvergleich zwischen BadI und MenB zeigt, dass die Reste des aktiven Zentrums von MenB aus Mycobacterium tuberculosis (mtMenB) in BadI von R. palustris konserviert sind. MenB ist Teil des Menaquinon Biosynthesewegs und ein potentielles Wirkstoffziel gegen M. tuberculosis, da kein humanes Homolog existiert. Wegen der ausgeprägten Homologie zwischen MenB und BadI und der Tatsache, dass bisher keine MenB-Inhibitor Komplex Strukturen gelöst werden konnten, erweiterten wir unser Interesse auf BadI, da es als Model für mtMenB als Wirkstoffziel dienen könnte.
Darüber hinaus besitzt BadI einige einzigartige mechanistische Charakteristika. Wie zuvor erwähnt, hydrolysiert es das Substrate durch eine reverse Dieckmanns Reaktion in Gegensatz zu seinem ähnlichsten Homolog MenB, das einen Ringschluss durch eine Dieckmanns Reaktion katalysiert. Dennoch scheinen die Reste des aktiven Zentrums streng konserviert zu sein. Daher entschieden wir die strukturelle Charakterisierung von BadI anzugehen um Gemeinsamkeiten und Unterschiede zwischen BadI und MenB aufzuzeigen und einen Einblick zu erhalten, wie sie die gegenläufigen Reaktionen durchführen.
Wir lösten die ersten Strukturen von BadI in seiner Apo-Form und einer Substrat-Mimik gebundenen Form. Die Kristallstrukturen von BadI zeigten die gleiche Gesamtfaltung wie andere Mitglieder der Crotonase Familie. Allerdings gibt es in BadI kein Anzeichen für Domain-Swapping, wie es in MenB beobachtet wurde. Das Fehlen des Domain-Swappings ist bemerkenswert, da die vertauschte C-terminale helikale Domäne in MenB ein Tyrosin enthält, welches essentiell für die Katalyse ist und auch in BadI konserviert vorliegt. Der Vergleich des aktiven Zentrums zeigt, dass der C-Terminus von BadI so auf seinen Kern/Hauptteil faltet, dass das konservierte Tyrosin an der gleichen Stelle positioniert ist wie in MenB und mit dem Liganden interagieren kann. Die Struktur von BadI bestätigt auch die Rolle eines Serin- und eines Aspartatrests für die Ligandenbindung und bekräftigt damit, dass das konservierte aktive Zentrum an der enzymatischen Reaktion teilnimmt. Die Strukturen zeigen auch eine bemerkenswerte Verschiebung des aktiven Aspartats, welches zwei Hauptkonformationen einnimmt. Strukturelle Analysen zeigten auch die Nähe des Serinrests zu einem Wasser- und Chlormolekül, sowie einem Kohlenstoffrest, an dessen Stelle der Carbonylrest des eigentlichen Substrats läge. Die biochemische Charakterisierung von BadI in enzymkinetischen Untersuchungen bestätigte dass die vorgeschlagenen Reste des aktiven Zentrums an der Substratbindung beteiligt sind. Jedoch ist die Rolle der verschiedenen Reste sehr verschieden, wobei dem Serin eine herausragende Rolle zugedacht wird. Die hier dargestellte Arbeit bestätigt die Mitwirkung des mutmaßlichen aktiven Zentrums und zeigt, dass die Reste des Aktiven Zentrums von BadI eine unterschiedliche Rolle, im Vergleich zu ihrem ähnlichsten Homolog MenB, spielen.
MenD, eine SEPHCHC (2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carbonsäure) Synthase, ist an der Menaquinonbiosynthese von S. aureus beteiligt. Obwohl S. aureus gewöhnlich als Kommensale betrachtet wird, kann es als bemerkenswertes Pathogen auftreten, wenn es die Epithelwand durchbricht und eine Vielzahl an Erkrankungen, von einfachen Hautinfektionen bis zu lebensbedrohlichen Zustanden, verursachen. Sogenannte „Small colony variants“ (SCVs), eine langsam wachsende, kleinzellige Subpopulation der Bakterien wurde mit persistenten, rezidivierenden und antibiotika-resistenten Infektionen assoziiert. Diese Varianten weisen einen Mangel von Thiamin, Menaquinon und Hämin auf. Menaquinon ist ein essentieller Bestandteil der Elektronentransport-Kette in grampositiven Organismen. Daher sind Enzyme dieses Stoffwechselwegs attraktive Wirkstoffziele gegen Krankheitserreger wie M. tuberculosis oder Bacillus subtilis. MenD, das Enzym, welches den ersten irreversiblen Schritt des Menaquinon-Biosynthesewegs katalysiert, wurde mit dem SCV Phänotyp von S. aureus in Verbindung gebracht. In dieser Arbeit werden die biochemischen und strukturellen Eigenschaften dieses wichtigen Enzyms untersucht.
Unsere strukturelle Untersuchung zeigte, dass trotz einer niedrigen Sequenzidentität von 28%, die Gesamtfaltung von S. aureus MenD (saMenD) mit derjenigen von Escherichia coli MenD (ecMenD), trotz einiger signifikanter Abweichungen, übereinstimmt. Größere strukturelle Unterschiede können nahe des aktives Zentrums des Proteins beobachtet werden, vor allem in der C-terminalen Helix und einer Schleife nahe dem aktiven Zentrum. Die Schleife enthält kritische Reste für die Kofaktorbindung und liegt nur in der ecMenD-ThDP Komplexstruktur definiert vor, während die in der Apo-Form und der Substrat-gebundenen Struktur von ecMenD ungeordnet ist. In unserer saMenD Struktur zeigt sich die Schleife erstmals komplett geordnet in der Apo-Form und stellt eine neue Konformation der Kofaktor-Bindeschleife dar. Die Schleife nimmt eine ungewöhnlich offene Konformation an und die konservierten Reste, welche für die Kofaktorbindung verantwortlich sind, sind zu weit entfernt, um in dieser Position einen produktiven Komplex mit dem Kofaktor zu bilden. Zudem haben biochemische Studien in Verbindung mit den strukturellen Daten zur Identifizierung der Substratbindetasche und der an der Bindung und Katalyse beteiligten Aminosäuren beigetragen. In der vorliegenden Arbeit wurden die biochemischen und strukturellen Charakteristika von saMenD erfolgreich aufgeklärt.
|
14 |
Etude de l'impact de bacteries environnementales sur la speciation de l'uranium en vue de processus de bioremediationUntereiner, Guillaume 25 November 2008 (has links) (PDF)
L'uranium est un toxique à la fois chimique et radiologique. C'est un élément que l'on retrouve à faible concentration dans l'environnement sauf lors de pollutions causées par les activités humaines. Du fait de sa forte réactivité, l'ion uranyle peut se complexer à de nombreux constituants du sol, qu'ils soient minéraux ou organiques. Ces différentes formes peuvent être ainsi plus ou moins biodisponibles pour les microorganismes et les plantes et peuvent ensuite rentrer dans la chaîne alimentaire de l'homme. La connaissance et la compréhension des mécanismes de transfert et du devenir d'éléments toxiques chimiques et radiologiques dans la biosphère constituent donc un enjeu capital pour permettre une bonne estimation des risques sanitaires et écologiques. La connaissance de la spéciation est capitale pour engager des processus de biorémédiation. Ici, c'est l'effet des microorganismes sur la spéciation de l'uranium dans l'environnement qui nous intéresse. Selon les formes initiales de l'uranium, les bactéries peuvent l'accumuler et/ou le transformer et ainsi modifier sa biodisponibilité. Les modèles utilisés dans cette étude sont Cupriavidus metallidurans CH34, bactérie tellurique résistante aux métaux lourds, Deinococcus radiodurans R1, bactérie connue pour être une des espèces les plus radiorésistantes et Rhodopseudomonas palustris, bactérie pourpre autotrophe capable de dégrader les composés aromatiques en anaérobie. Ces bactéries sont cultivées en présence de deux formes d'uranium retrouvées dans l'environnement : une forme minérale, le carbonate d'uranyle et une forme organique, le citrate d'uranyle. Ces formes ont d'abord été modélisées et les milieux de culture ont été modifiés pour pouvoir travailler avec ces espèces. La capacité des bactéries à résister, à transformer et/ou accumuler l'uranium a été étudiée. On observe une différence entre les concentrations minimales inhibitrices des deux spéciations mais celle-ci est en fait due à une différence de biodisponibilité des phosphates. Aucune accumulation ne semble être mise en évidence aux pH environnementaux par dosage de l'uranium et par observation au microscope électronique à transmission alors qu'une précipitation est observée à pH 1. La spéciation de l'uranium a été étudiée par spectroscopie d'absorption X (EXAFS). La spéciation est bien maitrisée dans les milieux de culture et les précipités observés aux pH très acide sont ces complexes de phosphates d'uranyle.
|
15 |
Femtosekundenspektroskopie an photosynthetischen Systemen Elektronentransfer in Purpurbakterien und Isomerisierung des Retinals in Bakteriorhodopsin /Huppmann, Petra. Unknown Date (has links)
Universiẗat, Diss., 2000--München.
|
16 |
Regulation of Alternative Sigma Factors During Oxidative and Ph Stresses in the Phototroph Rhodopseudomonas PalustrisPerry, Leslie M. 08 1900 (has links)
Rhodopseudomonas palustris is a metabolically versatile phototrophic α-proteobacterium. The organism experiences a wide range of stresses in its environment and during metabolism. The oxidative an pH stresses of four ECF (extracytoplasmic function) σ-factors are investigated. Three of these, σ0550, σ1813, and σ1819 show responses to light-generated singlet oxygen and respiration-generated superoxide reactive oxygen species (ROS). The EcfG homolog, σ4225, shows a high response to superoxide and acid stress. Two proteins, one containing the EcfG regulatory sequence, and an alternative exported catalase, KatE, are presented to be regulated by σ4225. Transcripts of both genes show similar responses to oxidative stress compared to σ4225, indicating it is the EcfG-like σ-factor homolog and controls the global stress response in R. palustris.
|
17 |
Caractérisation des bactériophytochromes identifiés chez Rhodopseudomas palustris et BradyrhizobiumVuillet, Laurie 03 December 2007 (has links) (PDF)
Rhodopseudomonas palustris est une bactérie pourpre photosynthétique dont le génome, entièrement séquencé, a révélé avec surprise la présence de 6 gènes codant des bactériophytochromes. L'un d'entre eux (RpBphP1) joue un rôle primordial et inhabituel dans la synthèse du photosystème. Chez cette bactérie, trois autres bactériophytochromes (RpBphP2, 3 et 4) sont localisés à proximité d'opérons pucBA codant les polypeptides des antennes collectrices de lumière associées au photosystème. Ce travail de thèse a consisté dans un premier temps à étudier les rôles, les propriétés et les mécanismes d'action de ces 3 bactériophytochromes. Il a pu être ainsi montré que les 2 bactériophytochromes RpBphP2 et 3 agissent de concert dans le contrôle des antennes de types LH4. Cette voie de régulation implique l'action de 3 autres réponses-régulateurs dont la protéine Rpa3018 sensible au potentiel redox. Cette étude a également révélé que, chez certaines souches de Rps. palustris, la protéine RpBphP4 a perdu sa sensibilité à la lumière mais a acquis en contrepartie une sensibilité au potentiel redox tout en conservant sa capacité à réguler l'expression des antennes de type LH2 via un système à 2 composants. Dans un second temps, l'analyse de la séquence du génome de deux Bradyrhizobium photosynthétiques (ORS278 et BTAi1) a révélé que chaque souche possède un bactériophytochrome spécifique sûrement acquis par transfert horizontal. Les études menées sur ces différents bactériophytochromes ont mis en exergue la diversité de cette famille de senseurs de lumière ainsi que la complexité des voies de signalisation qu'ils initient.
|
18 |
Electrostatic interactions and exciton coupling in photosynthetic light-harvesting complexes and reaction centers /Johnson, Ethan Thoreau. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 184-198).
|
19 |
Performance analysis of bioanode materials and the study of the metabolic activity of Rhodopseudomonas palustris in photo-bioelectrochemical systemsPankan, Aazraa Oumayyah January 2019 (has links)
A sustainable and low-cost system, namely a photo-bioelectrochemical system (photo-BES), based on the natural blueprint of photosynthetic microorganisms was studied. The aim of this research work is to improve the efficiency of electron transfer of the microorganisms for bioelectricity generation. The first strategy adopted was the evaluation of the exoelectrogenic activity of oxygenic photosynthetic cyanobaterium, Synechococcus elongatus PCC 7942, in biophotovoltaic (BPV) platforms through a comparative performance analysis of bioanode materials. The second approach involved improving the performance of anoxygenic photosynthetic bacterium, Rhodopseudomonas palustris ATCC® 17001™, by varying the ratio of nitrogen to carbon sources (N:C) to maximise both biohydrogen production and exoelectrogenesis for conversion into bioelectricity in photosynthetic microbial fuel cells (photoMFCs). A linear correlation was obtained between average surface roughness/surface area and maximum power density of ITO-coated and graphene/ITO-coated substrates. Graphene/ITO-coated PET bioanodes produced the highest maximum power output of 29±4 μW m-2 in a single chamber BPV device due to improved biofilm formation and improved electrochemical activity. XG Leaf®, also known as graphene paper, helped to bridge the shortcomings of carbon fibres in terms of wettability. The most hydrophilic, 240 μm thick graphene paper, produced the highest maximum power output of 393±20 μW m-2 in a membrane electrode assembly (MEA)-type BPV device, mainly due to reduced electrochemical polarisation. A proof of concept study compared the performance of screen-printed graphene onto a membrane separator against 3D-printed bioanodes coated with carbon nanotubes. One mm thick 3D-printed bioanode was better performing as its structures promoted a much denser biofilm with extensive fibrous extracellular matrix. Using a ratio of N:C=0.20 resulted in higher biohydrogen production and higher exoelectrogenic activity, generating a maximum power output of 361±157 mW m-2 and 2.39±0.13 mW m-2, respectively. This study provided additional insight in improving the electron transfer efficiency, which could be used to further optimise photo-BESs as part of future research and development for sustainable technologies.
|
20 |
Use of a purple non-sulphur bacterium, Rhodopseudomonas palustris, as a biocatalyst for hydrogen production from glycerolXiao, Ning January 2017 (has links)
This project was aimed to use a purple non-sulphur bacterium, Rhodopseudomonas palustris, as a biocatalyst for hydrogen production, from the waste of biodiesel manufacturing, crude glycerol. The goal of this project was to understand the fundamentals relevant to scaling up the process and developing an off the shelf product. The first objective was to determine the ability of R. palustris to generate hydrogen by non-growing cells in comparison to that by growing cells. Similar average hydrogen production rates and energy conversion were found for both processes but a significant difference in the hydrogen yield was observed. Hydrogen production reached ~ 80 % of the theoretical maximum hydrogen yield by non-growing R. palustris, about eight-fold of that reached by growing R. palustris. The high yield suggested that it is economically appealing to use non-growing R. palustris as the biocatalyst for continuous hydrogen production. To accomplish the proposed scale-up systems, understanding its product formation kinetics is the key. It was found that the hydrogen production rate is not growth-associated and depends solely on the dry cell mass with a non-growth associated coefficient of 2.52 (Leudeking–Piret model dP/dt=2.52 X). Light is vital for hydrogen production by non-growing R. palustris, in terms of light intensity and wavelength range. It was found that excessive or insufficient light intensity may constrain the performance. Only photons of light with appropriate wavelengths can excite cytochrome bacteriochlorophyll complexes II in R. palustris to generate hydrogen. Among white LEDs, infrared LEDs, and incandescent light bulbs, at the same light intensity, infrared LEDs gave the best results in the H2 production rate and energy conversion by non-growing cells, 22.0 % ± 1.5 % higher than that with white LEDs and around 25-30 times of that by incandescent light bulbs. It was found that non-growing R. palustris can be immobilised in alginate beads to give similar H2 production rates as that by cells suspended in media. This preliminary result pointed the direction of developing an off the shelf product of immobilised non-growing R. palustris as a biocatalyst for continuous hydrogen production.
|
Page generated in 0.0609 seconds