• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detailed Heat Transfer Measurements of Various Rib Turbulator Shapes at Very High Reynolds Numbers Using Steady-state Liquid Crystal Thermography

Zhang, Mingyang 18 January 2018 (has links)
In order to protect gas turbine blades from hot gases exiting the combustor, several intricate external and internal cooling concepts are employed. High pressure stage gas turbine blades feature serpentine passages where rib turbulators are installed to enhance heat transfer between the relatively colder air bled off from the compressor and the hot internal walls. Most of the prior studies have been restricted to Reynolds number of 90000 and several studies have been carried out to determine geometrically optimized parameters for achieving high levels of heat transfer in this range of Reynolds number. However, for land-based power generation gas turbines, the Reynolds numbers are significantly high and vary between 105 and 106. Present study is targeted towards these high Reynolds numbers where traditional rib turbulator shapes and prescribed optimum geometrical parameters have been investigated experimentally. A steady-state liquid crystal thermography technique is employed for measurement of detailed heat transfer coefficient. Five different rib configurations, viz., 45 deg., V-shaped, inverse V-shaped, W-shaped and M-shaped have been investigated for Reynolds numbers ranging from 150,000 to 400,000. The ribs were installed on two opposite walls of a straight duct with aspect ratio of unity. For very high Reynolds numbers, the heat transfer enhancement levels for different rib shapes varied between 1.3 and 1.7 and the thermal hydraulic performance was found to be less than unity. / Master of Science
2

Heat Transfer Performance Improvement Technologies for Hot Gas Path Components in Gas Turbines

Ravi, Bharath Viswanath 14 June 2016 (has links)
In the past few decades, the operating temperatures of gas turbine engines have increased significantly with a view towards increasing the overall thermal efficiency and specific power output. As a result of increased turbine inlet temperatures, the hot gas path components downstream of the combustor section are subjected to high heat loads. Though materials with improved temperature capabilities are used in the construction of the hot gas path components, in order to ensure safe and durable operation, the hot gas path components are additionally supplemented with thermal barrier coatings (TBCs) and sophisticated cooling techniques. The present study focusses on two aspects of gas turbine cooling, namely augmented internal cooling and external film cooling. One of the commonly used methods for cooling the vanes involves passing coolant air bled from the compressor through serpentine passages inside the airfoils. The walls of the internal cooling passages are usually roughened with turbulence promoters like ribs to enhance heat transfer. Though the ribs help in augmenting the heat transfer, they have an associated pressure penalty as well. Therefore, it is important to study the thermal-hydraulic performance of ribbed internal cooling passages. The first section of the thesis deals with the numerical investigation of flow and heat transfer characteristics in a ribbed two-pass channel. Four different rib shapes- 45° angled, V-shaped, W-shaped and M-shaped, were studied. This study further aims at exploring the performance of different rib-shapes at a large rib pitch-to-height ratio (p/e=16) which has potential applications in land-based gas turbines operating at high Reynolds numbers. Detailed flow and heat transfer analysis have been presented to illustrate how the innate flow physics associated with the bend region and the different rib shapes contribute to heat transfer enhancement in the two-pass channel. The bend-induced secondary flows were observed to significantly affect the flow and heat transfer distribution in the 2nd pass. The thermal-hydraulic performance of V-shaped and 45° angled ribs were better than W-shaped and M-shaped ribs. The second section of the study deals with the analysis of film cooling performance of different hole configurations on the endwall upstream of a first stage nozzle guide vane. The flow along the endwall of the airfoils is highly complex, dominated by 3-dimensional secondary flows. The presence of complex secondary flows makes the cooling of the airfoil endwalls challenging. These secondary flows strongly influence endwall film cooling and the associated heat transfer. In this study, three different cooling configurations- slot, cylindrical holes and tripod holes were studied. Steady-state experiments were conducted in a low speed, linear cascade wind tunnel. The adiabatic film cooling effectiveness on the endwall was computed based on the spatially resolved temperature data obtained from the infrared camera. The effect of mass flow ratio on the film cooling performance of the different configurations was also explored. For all the configurations, the coolant jets were unable to overcome the strong secondary flows inside the passage at low mass flow ratios. However, the coolant jets were observed to provide much better film coverage at higher mass flow ratios. In case of cylindrical ejection, the effectiveness values were observed to be very low which could be because of jet lift-off. The effectiveness of tripod ejection was comparable to slot ejection at mass flow ratios between 0.5-1.5, while at higher mass flow ratios, slot ejection was observed to outperform tripod ejection. / Master of Science
3

Effect of rib aspect ratio on heat transfer and friction in rectangular channels

Tran, Lucky Vo 01 January 2011 (has links)
The heat transfer and friction augmentation in the fully developed portion of a 2:1 aspect ratio rectangular channel with orthogonal ribs at channel Reynolds numbers of 20,000, 30,000, and 40,000 is studied both experimentally and computationally. Ribs are applied to the two opposite wide walls. The rib aspect ratio is varied systematically at 1, 3, and 5, with a constant rib height and constant rib pitch (rib-pitch-to-rib-height ratio of 10). The purpose of the study is to extend the knowledge of the performance of rectangular channels with ribs to include high aspect ratio ribs. The experimental investigation is performed using transient Thermochromic Liquid Crystals technique to measure the distribution of the local Nusselt numbers on the ribbed walls. Overall channel pressure drop and friction factor augmentation is also obtained with the experimental setup. A numerical simulation is also performed by solving the 3-D Reynolds-averaged Navier-Stokes equations using the realizable-k-Greek lowercase letter episilon] turbulence model for closure. Flow visualization is obtained from the computational results as well as numerical predictions of local distributions of Nusselt numbers and overal channel pressure drop. Results indicate that with increasing rib width, the heat transfer augmentation of the ribbed walls decreases with a corresponding reduction in channel pressure drop.
4

Experimental measurements of conjugate heat transfer on a scaled-up gas turbine airfoil with realistic cooling configuration

Dees, Jason Edward 07 October 2010 (has links)
This study performed detailed measurements on and around scaled up conducting and adiabatic airfoils with and without film cooling. The conducting vane was a matched Bi airfoil, which accurately scaled the convective heat transfer and conduction through the solid, in order to produce non-dimensional surface temperatures and thermal boundary layers that were representative of an actual engine. Measurements made on all vane models included surface temperature measurements and thermal profiles above the walls. Separate measurements on non-film cooled and film cooled conducting models allowed for the individual contributions of the internal convective cooling and external film cooling to the overall cooling scheme to be quantified. Surface temperature and thermal field measurements above the wall were also performed on a film cooled adiabatic model. For the conducting model with internal cooling only, strong streamwise temperature variations were seen. The surface temperature variations were highly dependent on the local external and internal heat transfer coefficients. Spanwise temperature variations also existed, but were modest in comparison to streamwise variations. Comparing the thermal fields above the film cooled adiabatic and conducting walls allowed for the assumption that the conducting wall would not significantly affect the thermal field in the film cooling jet to be tested. Near the edge of the film cooling jet the developing thermal boundary layer had a clear effect on the overlying gas temperature, suggesting that the common assumption that the adiabatic wall temperature is the appropriate driving temperature for heat transfer to a film cooled wall was invalid. On the jet centerline thermal boundary layer effects were less influential, due to the development of a new, thin boundary layer. This suggested that the adiabatic wall temperature as driving temperature for heat transfer was a reasonable assumption on the jet centerline for most cases tested. As film cooling momentum flux ratio increase, thermal boundary layer effects became more influential on the jet centerline. Additionally, the high resolution surface temperature measurements and thermal field measurements above the wall presented in the current study represent a significant improvement in the data available for validation of computational simulations of conducting turbine airfoils. / text

Page generated in 0.0488 seconds