1 |
Un criblage ciblant de nouveaux facteurs impliqués dans l’assemblage mitotique des chromosomes dans le nématode C. elegansRanjan, Rajesh 04 1900 (has links)
La division cellulaire est un processus fondamental des êtres vivants. À chaque division cellulaire, le matériel génétique d'une cellule mère est dupliqué et ségrégé pour produire deux cellules filles identiques; un processus nommé la mitose. Tout d'abord, la cellule doit condenser le matériel génétique pour être en mesure de séparer mécaniquement et également le matériel génétique. Une erreur dans le niveau de compaction ou dans la dynamique de la mitose occasionne une transmission inégale du matériel génétique. Il est suggéré dans la littérature que ces phénomènes pourraient causé la transformation des cellules cancéreuses. Par contre, le mécanisme moléculaire générant la coordination des changements de haut niveau de la condensation des chromosomes est encore incompris.
Dans les dernières décennies, plusieurs approches expérimentales ont identifié quelques protéines conservées dans ce processus. Pour déterminer le rôle de ces facteurs dans la compaction des chromosomes, j'ai effectué un criblage par ARNi couplé à de l'imagerie à haute-résolution en temps réel chez l'embryon de C. elegans. Grâce à cette technique, j'ai découvert sept nouvelles protéines requises pour l'assemblage des chromosomes mitotiques, incluant la Ribonucléotide réductase (RNR) et Topoisomérase II (topo-II). Dans cette thèse, je décrirai le rôle structural de topo-II dans l'assemblage des chromosomes mitotiques et ces mécanismes moléculaires. Lors de la condensation des chromosomes, topo-II agit indépendamment comme un facteur d'assemblage local menant par la suite à la formation d'un axe de condensation tout au long du chromosome. Cette localisation est à l'opposé de la position des autres facteurs connus qui sont impliqués dans la condensation des chromosomes. Ceci représente un nouveau mécanisme pour l'assemblage des chromosomes chez C. elegans. De plus, j'ai découvert un rôle non-enzymatique à la protéine RNR lors de l'assemblage des chromosomes. Lors de ce processus, RNR est impliqué dans la stabilité des nucléosomes et alors, permet la compaction de haut niveau de la chromatine. Dans cette thèse, je rapporte également des résultats préliminaires concernant d'autres nouveaux facteurs découverts lors du criblage ARNi. Le plus important est que mon analyse révèle que la déplétion des nouvelles protéines montre des phénotypes distincts, indiquant la fonction de celles-ci lors de l'assemblage des chromosomes. Somme toute, je conclus que les chromosomes en métaphase sont assemblés par trois protéines ayant des activités différentes d'échafaudage: topoisomérase II, les complexes condensines et les protéines centromériques. En conclusion, ces études prouvent le mécanisme moléculaire de certaines protéines qui contribuent à la formation des chromosomes mitotiques. / Cell division is a fundamental process that continuously happens in all living organisms. In each cell division, genetic material of the parent cell duplicates and segregates to produce genetically identical daughter cells in a process called mitosis. Cells need to condense their genetic material to be able to partition them equally. Any subtle defects, either timing or compaction level, could lead to the unequal inheritance of genetic material, a phenomenon that is believed to be the leading cause of cancerous transformation. However, the precise molecular mechanisms underlying the coordinated changes of higher-order chromosome structure are poorly understood.
In the last two decades, various approaches have identified several conserved factors required for chromosome condensation. To define the roles of known and novel factors in this process, I performed an RNAi based screen using high-resolution live imaging of the C. elegans one-cell embryo. Importantly, using an in vivo approach, I discovered seven novel factors required for mitotic chromosome assembly, including Ribonulceotide reducatase (RNR) and DNA topoisomerase II (topo-II). In this thesis, I report a structural role for topo-II in mitotic chromosome assembly and underlying molecular mechanisms. During chromosome condensation process, topo-II acts independently as a local assembly factor leading to global chromosome axis formation, contradicting models that chromosomes organize around preassembled scaffolds, thus representing a novel pathway for chromosome assembly in C. elegans. Furthermore, I also discovered a non-enzymatic role of RNR in the mitotic chromosome assembly process. During this process, RNR is involved in nucleosome stability, and thereby, it allows higher-order chromatin assembly. In this thesis, I also report preliminary data for other novel factors that I discovered in the RNAi based screen for factors involved in chromosome condensation. Importantly, my analyses revealed that the depletion of several proteins results in distinct chromosome condensation phenotypes, indicating that they function in discrete events during mitotic chromosome assembly. In sum, I conclude that metaphase chromosomes are built by the distinct scaffolding activities of three proteins: DNA topoisomerase II, condensin complexes and centromere proteins. Taken together, these studies provide underlying molecular mechanisms contributing to the mitotic chromosome formation.
|
2 |
Functional Genetic Analysis Reveals Intricate Roles of Conserved X-box Elements in Yeast Transcriptional RegulationVoll, Sarah 13 November 2013 (has links)
Understanding the functional impact of physical interactions between proteins and
DNA on gene expression is important for developing approaches to correct disease-associated gene dysregulation. I conducted a systematic, functional genetic analysis of protein-DNA interactions in the promoter region of the yeast ribonucleotide reductase
subunit gene RNR3. I measured the transcriptional impact of systematically
perturbing the major transcriptional regulator, Crt1, and three X-box sites on the
DNA known to physically bind Crt1. This analysis revealed interactions between
two of the three X-boxes in the presence of Crt1, and unexpectedly, a significant
functional role of the X-boxes in the absence of Crt1. Further analysis revealed Crt1-
independent regulators of RNR3 that were impacted by X-box perturbation. Taken
together, these results support the notion that higher-order X-box-mediated interactions
are important for RNR3 transcription, and that the X-boxes have unexpected roles in the regulation of RNR3 transcription that extend beyond their interaction with Crt1.
|
3 |
Functional Genetic Analysis Reveals Intricate Roles of Conserved X-box Elements in Yeast Transcriptional RegulationVoll, Sarah January 2013 (has links)
Understanding the functional impact of physical interactions between proteins and
DNA on gene expression is important for developing approaches to correct disease-associated gene dysregulation. I conducted a systematic, functional genetic analysis of protein-DNA interactions in the promoter region of the yeast ribonucleotide reductase
subunit gene RNR3. I measured the transcriptional impact of systematically
perturbing the major transcriptional regulator, Crt1, and three X-box sites on the
DNA known to physically bind Crt1. This analysis revealed interactions between
two of the three X-boxes in the presence of Crt1, and unexpectedly, a significant
functional role of the X-boxes in the absence of Crt1. Further analysis revealed Crt1-
independent regulators of RNR3 that were impacted by X-box perturbation. Taken
together, these results support the notion that higher-order X-box-mediated interactions
are important for RNR3 transcription, and that the X-boxes have unexpected roles in the regulation of RNR3 transcription that extend beyond their interaction with Crt1.
|
Page generated in 0.0821 seconds