111 |
Function/structure relationship study of trichosanthin, a Chinese medicinal protein, and its interaction with acidic ribosomal protein, PO. / CUHK electronic theses & dissertations collectionJanuary 2006 (has links)
Previous research showed that the C-terminal tail of TCS can be deleted to generate a mini-TCS (C7-TCS) with antigenicity. The second topic of my study is to resolve the role of the C-terminal of TCS. Structure of C7-TCS showed that deletion of the C-terminal tail destabilizes the protein structure and makes Trp192 more solvent exposed. The relationship between the C-terminal tail and Trp192 was determined by mutating Trp192 to Phe in wild-type TCS and C7-TCS, generating W192F-TCS and W192F-C7-TCS. The crystal structure of C7-TCS, [W192F]-TCS and [W192F]-C7-TCS were determined and compared. Trp192 was identified as an important residue in stabilizing the conformation of TCS. Besides, the accumulative effect of Trp192 and the C-terminal tail is significant on the ribosome-inactivating activity. By comparing the structures, it was found that, the hydrogen bond formed by amino acids 240 and 35 seems to be essential for the structure and amino acid 240 should be a critical residue for the connection of the N-terminal and C-terminal domains in trichosanthin. / Ribosome-inactivating activity is the most important activity of TCS and RIPs. Therefore, the third topic of my study is to find the important of interaction between TCS and ribosomal proteins. Two ribosomal proteins, P0 and P1, have been identified previously to interact with TCS. By yeast two-hybrid screening, three cut of ten charge residues in TCS were identified to be the interaction sites between TCS and ribosomal protein P0. The interaction region was located on the surface of TCS near the entrance to the active pocket. The interaction with P0 was shown to be carried out by electrostatic interaction between the positively charge residues of TCS. However, the mutation of all the concerned residues in TCS gave only a mild reduction in inhibiting the protein synthesis of an in vitro reticulocyte translation system, showing that the interaction between TCS and P0 only plays a minor role in the ribosomal inactivating activity of TCS. / The first topic of my research is to find the role of Glu-85. The structure of [E85Q]-TCS and AMP complex was obtained. It is deduced that there are two sites for substrate binding in TCS, one is for recognition and another ion hydrolysis. The structure also indicated that protonation of substrate adenine is carried out by a water molecule in the active pocket of TCS during its N-glycosidase action. / Trichosanthin (TCS) is a Chinese medicinal protein isolated froth the root tuber of Trichosanthes kirilowi Maximowicz. It is a 27kDa protein with multiple pharmacological properties, including abortifacient, anti-tumor and anti-human immunodeficiency virus (HIV). It is believed that the pharmacological properties of TCS are related to ribosome-inactivation, by breaking, the specific glycosidic bond of adenine 4324 from the 28S rRNA. / Too Hiu Mei. / "February 2006." / Advisers: Pang-Chui Shaw; Kam-Bo Wong. / Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6213. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 164-175). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
112 |
Cellular mechanism of the neurotoxicity of ribosome-inactivating proteins.January 2001 (has links)
by Wai-Man Tong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 155-174). / Abstracts in English and Chinese. / ABSTRACT --- p.I-IV / Chapter 1. --- INTRODUCTION / Chapter 1.1. --- General / Chapter 1.1.1. --- Ribosome Inactivating Protein --- p.1 / Chapter 1.1.1.1. --- Ricin --- p.2 / Chapter 1.1.1.2. --- Trichosanthin --- p.5 / Chapter 1.1.2. --- In Vitro Study of RIP --- p.6 / Chapter 1.2. --- Uptake of Ribosome Inactivating Proteins / Chapter 1.2.1. --- Suicide Transport --- p.7 / Chapter 1.2.1.1 . --- Endocytic Uptake of Ricin --- p.8 / Chapter 1.2.1.2. --- Endocytic Uptake of Trichosanthin --- p.11 / Chapter 1.2.2. --- Pervious Studies in This Laboratory --- p.11 / Chapter 1.3. --- Apoptosis And Ribosome Inactivation / Chapter 1.3.1. --- Apoptosis / Chapter 1.3.1.1. --- Morphological Feature of Apoptosis --- p.14 / Chapter 1.3.1.2. --- Molecular Changes of Apoptosis --- p.15 / Chapter 1.3.2. --- Toxicity of Ribosome Inactivating Protein / Chapter 1.3.2.1. --- Toxicity of Ricin --- p.20 / Chapter 1.3.2.2. --- Toxicity of Trichosanthin --- p.21 / Chapter 2. --- MATERIALS AND METHODS / Chapter 2.1. --- GENERAL / Chapter 2.1.1. --- Cell Culture / Chapter 2.1.1.1 . --- Schwann Cell Culture --- p.23 / Chapter 2.1.1.2. --- Dorsal Root Ganglion Neuron Culture --- p.24 / Chapter 2.1.1.3. --- Identification of Schwann Cell and Dorsal Root Ganglion Neuron --- p.25 / Chapter 2.1.2. --- Labeling of Toxins --- p.26 / Chapter 2.1.3. --- Administration of Toxin --- p.27 / Chapter 2.2. --- UPTAKE OF RIBOSOME INACTIVATING PROTEINS / Chapter 2.2.1. --- Real-Time Observation of Toxin Uptake by Neurons --- p.27 / Chapter 2.3. --- APOPTOSIS STUDY OF RIBOSOME INACTIVATING PROTEINS' TOXICITY / Chapter 2.3.1. --- TUNEL Staining --- p.28 / Chapter 2.3.2. --- Annexin V Staining --- p.30 / Chapter 2.4. --- MOLECULAR STUDY OF THE DEATH MECHANISM OF RIBOSOME INACTIVATING PROTEINS / Chapter 2.4.1. --- NIH/3T3 Cell Line Culture --- p.33 / Chapter 2.4.2. --- Differential Display / Chapter 2.4.2.1. --- Differential Display --- p.34 / Chapter 2.4.2.2. --- Cloning and Sequencing --- p.38 / Chapter 2.4.2.3. --- RT-PCR --- p.42 / Chapter 2.4.3. --- Two Dimension Gel Electrophoresis --- p.43 / Chapter 2.4.4. --- Ribosomal RNA Analysis --- p.48 / Chapter 3. --- RESULTS / Chapter 3.1. --- General / Chapter 3.1.1. --- Cell Culture / Chapter 3.1.1.1 . --- Schwann Cell Culture --- p.50 / Chapter 3.1.1.2. --- Dorsal Root Ganglion Neuron Culture --- p.51 / Chapter 3.1.1.3. --- Identification of Schwann Cell and Dorsal Root Ganglion Neuron --- p.51 / Chapter 3.1.2. --- RIPs Labeling --- p.52 / Chapter 3.2. --- Uptake of Ribosome Inactivating Protein / Chapter 3.2.1. --- Real-Time Observation of Toxin Uptake --- p.53 / Chapter 3.3. --- Apoptosis Study of Ribosome Inactivating Proteins' Toxicity / Chapter 3.3.1. --- TUNEL Staining --- p.55 / Chapter 3.3.2. --- Annexin V Assay / Chapter 3.3.2.1. --- Schwann Cell Culture --- p.57 / Chapter 3.3.2.2. --- Dorsal Root Ganglion Neuron Culture --- p.58 / Chapter 3.3.2.3. --- Unique Observable Pattern --- p.60 / Chapter 3.4. --- Molecular Study of the Death Mechanism of Ribosome Inactivating Proteins / Chapter 3.4.1. --- NIH/3T3 Cell Line Culture --- p.60 / Chapter 3.4.1.1. --- TUNEL Staining --- p.61 / Chapter 3.4.1.2. --- Annexin V Staining --- p.61 / Chapter 3.4.2. --- Differential Display / Chapter 3.4.2.1. --- Observation --- p.61 / Chapter 3.4.2.2. --- Primer Combination --- p.62 / Chapter 3.4.2.3. --- Differential Display --- p.62 / Chapter 3.4.3. --- Two-Dimensional Gel Electrophoresis / Chapter 3.4.3.1. --- Observation --- p.63 / Chapter 3.4.3.2. --- Comparison of Gels --- p.63 / Chapter 3.4.4. --- Ribosomal RNA Analysis --- p.63 / Chapter 4. --- DISCUSSION / Chapter 4.1. --- General / Chapter 4.1.1. --- The Selection of In Vitro Model / Chapter 4.1.1.1. --- Schwann Cell Culture --- p.65 / Chapter 4.1.1.2. --- Dorsal Root Ganglion Neuron Culture --- p.66 / Chapter 4.1.2. --- Labeling of Toxins with Fluorochromes --- p.67 / Chapter 4.1.3. --- Dosage Used in In Vitro Study --- p.68 / Chapter 4.2. --- Uptake of Ribosome Inactivating Proteins / Chapter 4.2.1. --- Real-Time Examination of Toxin Uptake --- p.69 / Chapter 4.3. --- Involvement of Apoptosis in Ribosome Inactivating Proteins' Intoxication / Chapter 4.3.1. --- TUNEL Staining --- p.75 / Chapter 4.3.2. --- Annexin V and Propidium Iodide Staining --- p.77 / Chapter 4.3.3. --- Special Pattern of Fluorescence Signal in Neuronal Cell Bodies --- p.82 / Chapter 4.4. --- Molecular Study of Death Mechanism of Ribosome Inactivating Proteins / Chapter 4.4.1. --- NIH/3T3 Cell Line Culture --- p.84 / Chapter 4.4.2. --- Differential Display --- p.84 / Chapter 4.4.3. --- Two Dimensional Polyacrylamide Gel Electrophoresis --- p.86 / Chapter 4.4.4. --- Ribosomal RNA Alternation --- p.88 / Chapter 5. --- CONCLUSIONS --- p.89 / Chapter 6. --- "FIGURES, GRAPHS AND LEGENDS" --- p.91 / Chapter 7. --- REFERENCES --- p.155 / APPENDIX / Appendix A Materials --- p.175 / Appendix B Source of Chemicals and Equipments --- p.184 / ACKNOWLEDGEMENTS --- p.186
|
113 |
Characterization of unclassifiable acinetobacters from Hong Kong.January 2001 (has links)
by Chu Ka-yi. / Thesis submitted in: October 2000. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 160-174). / Abstracts in English and Chinese. / ABSTRACT (English) --- p.i / ABSTRACT (Chinese) --- p.iii / ACKNOWLEDGMENT --- p.v / LIST OF CONTENTS --- p.vi / LIST OF TABLES --- p.x / LIST OF FIGURES --- p.xii / ABBREVIATIONS --- p.xiv / TERMS --- p.xv / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Taxonomy of Acinetobacter - historical and current --- p.1 / Chapter 1.2 --- Ecology and clinical significance of Acinetobacter --- p.5 / Chapter 1.3 --- General identification and typing methods for Acinetobacter species / Chapter 1.3.1 --- Identification at species level --- p.9 / Chapter 1.3.2 --- Identification at strain level --- p.11 / Chapter 1.4 --- Methods used in this study for characterization of Acinetobacter species / Chapter 1.4.1 --- Amplified ribosomal DNA restriction analysis (ARDRA) --- p.14 / Chapter 1.4.2 --- tDNA spacer fingerprinting (tDNA) --- p.15 / Chapter 1.4.3 --- Fluorescent amplified fragment length polymorphism (FAFLP) --- p.16 / Chapter 1.4.4 --- Phenotypic methods including carbon utilization tests --- p.20 / Chapter 1.5 --- Objectives --- p.25 / Chapter CHAPTER 2 --- MATERIALS AND METHODS --- p.27 / Chapter 2.1 --- Bacterial strains and isolates --- p.27 / Chapter 2.2 --- Materials / Chapter 2.2.1 --- Antimicrobial agents and chemicals --- p.30 / Chapter 2.2.2 --- "Carbohydrates, enzymes and other materials" --- p.32 / Chapter 2.2.3 --- Commercial media and media prepared manually --- p.33 / Chapter 2.2.4 --- "Buffers, solutions and list of instruments" --- p.35 / Chapter 2.3 --- General Bacteriological Techniques / Chapter 2.3.1 --- Isolation of acinetobacters --- p.38 / Chapter 2.3.2 --- Routine bacteriological identification --- p.39 / Chapter 2.4 --- General Molecular Biology Techniques / Chapter 2.4.1 --- DNA isolation --- p.40 / Chapter 2.4.2 --- Transformation --- p.41 / Chapter 2.4.3 --- Agarose gel electrophoresis --- p.43 / Chapter 2.5 --- Genospeciation of acinetobacters by Amplified Ribosomal Restriction DNA Analysis (ARDRA) --- p.44 / Chapter 2.6 --- Characterization of ARDRA unclassifiable acinetobacters (AUA) by Phenotypic methods / Chapter 2.6.1 --- Temperature tolerance tests --- p.47 / Chapter 2.6.2 --- Carbon utilization tests --- p.47 / Chapter 2.6.3 --- Gelatin and hemolysis tests --- p.48 / Chapter 2.6.4 --- Minimum Inhibitory Concentration (MIC) --- p.49 / Chapter 2.7 --- Characterization of AUA by tDNA spacer fingerprinting (tDNA) method --- p.51 / Chapter 2.8 --- Characterization of AUA by Fluorescent Amplified Fragment Length Polymorphism analysis (FAFLP) --- p.55 / Chapter 2.9 --- Relatedness study of isolates within the same AUA group by Enterobacterial Repetitive Intergenic Consensus (ERIC) typing method --- p.58 / Chapter CHAPTER 3 --- COLLECTION OF UNCLASSIFIABLE ACINETOBACTERS by ARDRA (AUA) METHOD --- p.59 / Chapter 3.1 --- Results / Chapter 3.1.1 --- Isolation and genospeciation of acinetobacters from hospital environments and raw food --- p.59 / Chapter 3.1.2 --- Collection of ARDRA unclassifiable acinetobacters (AUA) --- p.63 / Chapter 3.2 --- Discussion / Chapter 3.2.1 --- Limitations and merits of ARDRA method --- p.68 / Chapter 3.2.2 --- Potential significance of the representative AUA groups --- p.71 / Chapter CHAPTER 4 --- CHARACTERIZATION OF ARDRA UNCLASSIFIABLE ACINETOBACTERS (AUA) BY tDNA SPACER (tDNA) FINGERPRINTING METHOD --- p.72 / Chapter 4.1 --- Results / Chapter 4.1.1 --- Assessment of reproducibility --- p.72 / Chapter 4.1.2 --- Construction of the database with the reference strains --- p.75 / Chapter 4.1.3 --- Characterization of the representative AUA groups --- p.78 / Chapter 4.2 --- Discussion / Chapter 4.2.1 --- Evaluation of the reproducibility and discriminatory power --- p.89 / Chapter 4.2.2 --- Possible genospeciation of the representative AUA groups --- p.92 / Chapter 4.2.3 --- Limitations and merits --- p.96 / Chapter CHAPTER 5 --- CHARACTERIZATION OF ARDRA UNCLASSIFIABLE ACINETOBACTERS (AUA) BY FLUORESCENT AMPLIFIED FRAGMENT LENGTH POLYMORPHISM (FAFLP) METHOD --- p.98 / Chapter 5.1 --- Results / Chapter 5.1.1 --- Assessment of robustness and reproducibility --- p.98 / Chapter 5.1.2 --- Construction of the database with the reference strains --- p.104 / Chapter 5.1.2 --- Characterization of the representative AUA groups --- p.108 / Chapter 5.2 --- Discussion / Chapter 5.2.1 --- "Evaluation of robustness, reproducibility and discriminatory power" --- p.116 / Chapter 5.2.2 --- Possible genospeciation of the representative AUA groups --- p.120 / Chapter 5.2.3 --- Merits and limitations --- p.122 / Chapter CHAPTER 6 --- CHARACTERIZATION OF ARDRA UNCLASSIFABLE ACINETOBACTERS (AUA) BY PHENOTYPIC METHODS --- p.125 / Chapter 6.1 --- Results Characterization of the representative AUA groups --- p.125 / Chapter 6.2 --- Discussion / Chapter 6.2.1 --- Possible genospeciation of the representative AUA groups --- p.134 / Chapter 6.2.2 --- Limitations in classification of Acinetobacter species at genomic species level --- p.135 / Chapter CHAPTER 7 --- RELATEDNESS OF ISOLATES WITHIN THE SAME AUA GROUPS --- p.139 / Chapter 7.1 --- Results Typing results of the studied AUA groups by ERIC method --- p.139 / Chapter 7.2 --- Discussion Relatedness of the isolates within the same AUA group --- p.146 / Chapter CHAPTER 8 --- GENERAL DISCUSSION --- p.148 / Chapter 8.1 --- Possible genospeciation of the representative AUA groups --- p.150 / Chapter 8.2 --- "Comparison of ARDRA, tDNA fingerprinting, FAFLP and phenotypic methods" --- p.154 / Chapter 8.3 --- Conclusion and significance of the AUA groups studied --- p.158 / Chapter 8.4 --- Future work --- p.159 / REFERENCES --- p.160 / APPENDIX --- p.176
|
114 |
Clonagem, expressão, purificação e caracterização estrutural da proteína ribossomal L10 humana recombinante / Cloning, periplasmic expression, purification and structural characterization of human ribosomal protein L10 recombinantLarissa Miranda Pereira 01 December 2009 (has links)
A proteína ribossomal L10 (RP L10) é uma forte candidata a ser incluída na classe de proteínas supressoras de tumor. Também denominada QM, a proteína em questão é conhecida por participar da ligação das subunidades ribossomais 60S e 40S e da tradução de mRNAs. Possui massa molecular entre 24 a 26 kDa e ponto isoelétrico (pI) 10,5. A seqüência da proteína QM é bastante conservada em mamíferos, plantas, invertebrados, insetos e leveduras indicando que esta possui funções críticas na célula. Com função supressora de tumor, a proteína RP L10 foi estudada em linhagens de tumor de Wilm (WT-1) e em células tumorais de estômago, nas quais se observou uma diminuição na quantidade de seu mRNA. Mais recentemente a RP L10 foi encontrada em baixas quantidades nos estágios iniciais de adenoma de próstata e com uma mutação em câncer de ovário, indicando uma participação no desenvolvimento destas doenças. Como proteína, já foi descrito que esta interage com as proteínas c-Jun e c-Yes, inibindo a ação ativadora de fatores de crescimento e divisão celular. Este trabalho tem um papel importante no estabelecimento da expressão desta proteína solúvel, para estudos posteriores que tenham como objetivo avaliar a ação de regiões específicas que atuam na ligação das subunidades ribossomais 60S e 40S e tradução, bem como nas regiões que se ligam a proto-oncogenes. O cDNA para proteína QM foi amplificado por PCR e clonado no vetor de expressão periplásmica p3SN8. A proteína QM foi expressa em E.coli BL21 (DE3) no citoplasma e periplasma bacteriano e na melhor condição, a expressão de QM de bactérias transformadas pelo plasmídeo recombinante p1813_QM em 25°C ou 30°C, a proteína foi obtida solúvel e com quantidad es muito pequenas de contaminantes. Os ensaios de estrutura secundária demonstraram que a proteína QM tem predominância de a-hélice, mas quando do seu desenovelmento, essa condição muda e a proteína passa a ter característica de folhas β. / The ribosomal protein L10 (RP L10) is a strong candidate to be included in the class of tumor suppressor proteins. This protein, also denominated as QM, is known to participate in the binding of ribosomal subunits 60S and 40S and the translation of mRNAs. It has a molecular weight that varies between 24 and 26 kDa and an isoelectric point of (pI) 10.5. The sequence of the protein QM is highly conserved in mammals, plants, invertebrates, insects and yeast which indicates its critical functions in a cell. As a tumor suppressor, RP L10 has been studied in strains of Wilm\'s tumor (WT-1) and tumor cells in the stomach, where was observed a decrease in the amount of its mRNA. More recently, the RP L10 was found in low amounts in the early stages of prostate adenoma and showed some mutation in ovarian cancer, what indicates its role as a suppressor protein in the development of these diseases. It has also been described that this protein interacts with c-Jun and c-Yes inhibiting growth factors and consequently, cell division. This work has an important role on the establishment of soluble expression of QM to give base information for further studies on expression that aim to evaluate the specific regions where it acts binding the 60S and 40S ribossomal subunits and translation, as well as its binding to proto-oncogenes. The cDNA for QM protein was amplified by PCR and cloned into periplasmic expression vector p3SN8. The QM protein was expressed in E. coli BL21 (DE3) in the region of cytoplasm and periplasm, the best condition was obtained from the expression of the recombinant plasmid QM p1813_QM at 25°C or 30°C, the soluble protein was obtained with small amounts of contaminants. The assays of secondary structure showed that the QM protein is predominantly alpha-helix, but when it loses the folding, this condition changes and the protein is replaced by β- sheet feature.
|
115 |
A genomics-led approach to deciphering heterocyclic natural product biosynthesisChan, Karen Hoi-Lam January 2019 (has links)
Heterocycles play an important role in many biological processes and are widespread among natural products. Oxazole-containing natural products possess a broad range of bioactivities and are of great interest in the pharmaceutical and agrochemical industries. Herein, the biosynthetic routes to the oxazole-containing phthoxazolins and the bis(benzoxaozle) AJI9561, were investigated. Phthoxazolins A-D are a group of oxazole trienes produced by a polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) pathway in Streptomyces sp. KO-7888 and Streptomyces sp. OM-5714. The phthoxazolin pathway was used as a model to study 5-oxazole and primary amide formation in PKS-NRPS pathways. An unusually large gene cluster for phthoxazolin biosynthesis was identified from the complete genome sequence of the producer strains and various gene deletions were performed to define the minimal gene cluster. PhoxP was proposed to encode an ATP-dependent cyclodehydratase for 5-oxazole formation on an enzyme-bound N-formylglycylacyl-intermediate, and its deletion abolished phthoxazolin production. In vitro reconstitution of the early steps of phthoxazolin biosynthesis was attempted to validate the role of PhoxP, but was unsuccessful. Furthermore, Orf3515, a putative flavin-dependent monooxygenase coded by a remote gene, was proposed to hydroxylate glycine-extended polyketide-peptide chain(s) at the α-position to yield phthoxazolins with the primary amide moiety. On the other hand, an in vitro approach was employed to establish the enzymatic logic of the biosynthesis of AJI9561, a bis(benzoxazole) antibiotic isolated from Streptomyces sp. AJ9561. The AJI9561 pathway was reconstituted using the precursors 3-hydroxyanthranilic acid and 6-methylsalicylic acid and five purified enzymes previously identified from the pathway as key enzymes for benzoxazole formation, including two adenylation enzymes for precursor activation, an acyl carrier protein (ACP), a 3-oxoacyl-ACP synthase and an amidohydrolase-like cyclase. Intermediates and shunt products isolated from enzymatic reactions containing different enzyme and precursor combinations were assessed for their competence for various steps of AJI9561 biosynthesis. Further bioinformatic analysis and in silico modelling of the amidohydrolase-like cyclase shed light on the oxazole cyclisation that represents a novel catalytic function of the amidohydrolase superfamily.
|
116 |
30S Ribosomal Subunit Assembly is a Target for Inhibition by Aminoglycoside Antibiotics in <em>Escherichia coli</em>.Mehta, Roopal Manoj 04 May 2002 (has links)
Antibacterial agents specific for the 50S ribosomal subunit not only inhibit translation but also prevent assembly of that subunit. I examined the 30S ribosomal subunit in growing Escherichia coli cells to see if antibiotics specific for that subunit also had a second inhibitory effect. I used the aminoglycoside antibiotics paromomycin and neomycin, which bind specifically to the 30S ribosomal subunit. Both antibiotics inhibited the growth rate, viable cell number, and protein synthesis. I used a 3H-uridine pulse and chase assay to examine the kinetics of ribosome subunit assembly in the presence and absence of each antibiotic. Analysis revealed a concentration dependent inhibition of 30S subunit formation in the presence of each antibiotic. Sucrose gradient profiles of cell lysates showed the accumulation of an intermediate 21S translational particle. Taken together this data gives the first demonstration that 30S ribosomal subunit inhibitors can also prevent assembly of the small subunit.
|
117 |
Random Mutagenesis of Rhodococcus Strain KCHXC3 and Detection of Mutants Which No Longer Produce an Antibacterial CompoundHolley, Robert Christopher 01 December 2016 (has links)
The soil bacterium Rhodococcus is a member of the phylum Actinobacteria and is related to Streptomyces, which is known for its production of many secondary metabolites. Recent genomic investigation of Rhodococcus has uncovered many silent gene clusters that appear to code for nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKS) of unknown function. Previous work, showed that Rhodococcus species strain KCHXC3 produces an inhibitory compound in agar culture extracts that displays prominent activity against several Gram positive and Gram negative species including the pathogens Rhodococcus equi, Shigella dysenteriae and Pseudomonas aeruginosa. Using the engineered Rhodococcus transposon vector, pTNR, the goal of this investigation is to screen random mutants of KCHXC3 for strains that no longer produce the inhibitory molecule. A library of 1825 random insertion mutants was produced via electroporation then screened for production of the inhibitory molecule by a disk diffusion assay against Shigella dysenteriae. From this screening, 7 mutants which no longer produce the compound of interest were identified.
|
118 |
Multiple Recoding Mechanisms Produce Cyclooxygenase and Cyclooxygenase-Related Proteins from Frameshift-Containing COX-3/COX-1b Transcripts in Rat and HumanHunter, John Cameron 08 August 2012 (has links)
To increase diversity of enzymes and proteins, cells mix and match exonic and intronic regions retained in mature mRNAs by alternative splicing. An estimated 94% of all multi-exon genes express one or more alternatively spliced transcripts generating proteins with similar or modified functions. Cyclooxygenase is a signaling enzyme that catalyzes the rate-limiting step in the synthesis of diverse bioactive lipids termed prostaglandins. Prostaglandins are involved in myriad physiological and pathopysiological processes including vasoregulation, stomach mucosal maintenance, parturition, pain, fever, inflammation, neoplasia and angiogenesis and are inhibited by aspirin-like drugs known as NSAIDs. In 2002 an alternatively spliced, intron-1 retaining variant of COX-1 was cloned from canine brain tissue. This new variant, termed COX-3 or COX-1b, is an enzymatically active prostaglandin synthase expressed at relatively high levels in a tissue and cell type dependant manner in all species examined. In humans and most rodent species intron-1 is 94 and 98 nucleotides long respectively. Retention of the intron in these species introduces a frameshift and is predicted to result in translation of a very small 8-16kD protein with little similarity to either 72kD COX-1 or COX-2, calling into question the role of this variant. In this dissertation, I present my results from cloning and ectopically expressing a complete and accurate COX-3 cDNA from both rat and human. I confirmed that COX-3 mRNA encodes multiple large molecular weight cyclooxygenase-like proteins in the same reading frame as COX-1. Translation of these proteins relies on several recoding mechanisms including cap-independent translation initiation, alternative start site selection, and ribosomal frameshifting. Using siRNA and Western blotting I have identified some of these proteins in tissues and cells. Two COX-3 encoded proteins are active prostaglandin synthase enzymes with activities similar to COX-1 and represent novel targets of NSAIDs. Other COX-3 proteins have unknown function, but their size and cellular location suggest potential roles as diverse as cytosolic enzymes and nuclear factors.
|
119 |
Multiple Modes of Mdmx Regulation Affect p53 ActivationGilkes, Daniele M 25 February 2008 (has links)
MDMX has emerged as a negative regulator of p53 transcriptional activity following DNA damage, loss of ribosomal integrity, and aberrant mitogenic signaling. Disruption of rRNA biogenesis by ribosomal stress activates p53 by releasing ribosomal proteins from nucleoli which bind MDM2 and inhibit p53 degradation. We found that p53 activation by ribosomal stress requires degradation of MDMX by MDM2. This occurs by L11 binding to the acidic domain of MDM2 which promotes its E3 ligase function preferentially towards MDMX. Further, unlike DNA damage which regulates MDMX stability through ATM-dependent phosphorylation events, ribosomal stress does not require MDMX phosphorylation suggesting p53 may be more sensitive to suppression by MDMX under these conditions. Indeed, we find that tumor cells overexpressing MDMX are less sensitive to ribosomal stress-induced growth arrest by the addition of actinomycin D due to formation of inactive p53-MDMX complexes that fail to transcriptionally activate downstream targets such as p21. Knockdown of MDMX increases sensitivity to actinomycin D, whereas MDMX overexpression abrogates p53 activation. Furthermore, MDMX expression promotes resistance to the chemotherapeutic agent 5-fluorouracil (5-FU), which at low concentrations activates p53 by inducing ribosomal stress without significant DNA damage signaling. Knockdown of MDMX abrogates HCT116 tumor xenograft formation in nude mice. MDMX overexpression does not accelerate tumor growth but increases resistance to 5-FU treatment in vivo.
In addition to MDMX regulation at the protein level, we found that regulation of cellular MDMX levels, like MDM2, can occur at the transcriptional level by inducing the Ras/Raf/MEK/ERK pathway. We found MDMX levels in tumor cell lines closely correlate with promoter activity and mRNA level. Activated K-Ras and growth factor IGF-1 induce MDMX expression at the transcriptional level through mechanisms that involve the MAPK kinase and c-Ets-1 transcription factors. Pharmacological inhibition of MEK results in down-regulation of MDMX in tumor cell lines. MDMX overexpression is detected in ~50% of human colon tumors and showed strong correlation with increased Erk phosphorylation. Taken together, the data show that MDMX has multiple modes of regulation, which ultimately determine the overall extent of p53 activation.
|
120 |
Bioactivity and genome guided isolation of a novel antimicrobial protein from Thalassomonas viridansAdams, Shanice Raquel January 2019 (has links)
>Magister Scientiae - MSc / The continued emergence of bacterial resistance to the antibiotics currently employed to treat several diseases has added to the urgency to discover and develop novel antibiotics. It is well established that natural products have been the source of the most effective antibiotics that are currently being used to treat infectious diseases and they remain a major source for drug production. Natural products derived from marine microorganisms have received much attention in recent years due to their applications in human health. One of the biggest bottlenecks in the drug discovery pipeline is the rediscovery of known compounds. Hence, dereplication strategies such as genome sequencing, genome mining and LCMS/MS among others, are essential for unlocking novel chemistry as it directs compound discovery away from previously described compounds. In this study, the genome of a marine microorganism, Thalassomonas viridans XOM25T was mined and its antimicrobial activity was assessed against a range of microorganisms. Genome sequencing data revealed that T. viridans is a novel bacterium with an average nucleotide identity of 81% to its closest relative T. actiniarum. Furthermore, genome mining data revealed that 20% of the genome was committed to secondary metabolisms and that the pathways were highly novel at a sequence level. To our knowledge, this species has not previously been exploited for its antimicrobial activity. Hence, the aim of this study was to screen for bioactivity and identify the biosynthetic gene/s responsible for the observed bioactivity in T. viridans using a bioassay-and-genome- guided isolation approach to assess the bioactive agent. The bioassay-guided fractionation approach coupled to LCMS/MS led to the identification of a novel antimicrobial protein, TVP1. Bioinformatic analyses showed that TVP1 is a novel antimicrobial protein that is found in the tail region of a prophage in the T. viridans genome. Phage-derived proteins have previously been shown to induce larval settlement in some marine invertebrates. Since the mechanism of action of TVP1 remains unknown, it remains a speculation whether it may offer a similar function. More research is required to determine the biotechnological application and the role of TVP1 in its host and natural environment.
|
Page generated in 0.052 seconds