• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HIGH ACCURACY MULTISCALE MULTIGRID COMPUTATION FOR PARTIAL DIFFERENTIAL EQUATIONS

Wang, Yin 01 January 2010 (has links)
Scientific computing and computer simulation play an increasingly important role in scientific investigation and engineering designs, supplementing traditional experiments, such as in automotive crash studies, global climate change, ocean modeling, medical imaging, and nuclear weapons. The numerical simulation is much cheaper than experimentation for these application areas and it can be used as the third way of science discovery beyond the experimental and theoretical analysis. However, the increasing demand of high resolution solutions of the Partial Differential Equations (PDEs) with less computational time has increased the importance for researchers and engineers to come up with efficient and scalable computational techniques that can solve very large-scale problems. In this dissertation, we build an efficient and highly accurate computational framework to solve PDEs using high order discretization schemes and multiscale multigrid method. Since there is no existing explicit sixth order compact finite difference schemes on a single scale grids, we used Gupta and Zhang’s fourth order compact (FOC) schemes on different scale grids combined with Richardson extrapolation schemes to compute the sixth order solutions on coarse grid. Then we developed an operator based interpolation scheme to approximate the sixth order solutions for every find grid point. We tested our method for 1D/2D/3D Poisson and convection-diffusion equations. We developed a multiscale multigrid method to efficiently solve the linear systems arising from FOC discretizations. It is similar to the full multigrid method, but it does not start from the coarsest level. The major advantage of the multiscale multigrid method is that it has an optimal computational cost similar to that of a full multigrid method and can bring us the converged fourth order solutions on two grids with different scales. In order to keep grid independent convergence for the multiscale multigrid method, line relaxation and plane relaxation are used for 2D and 3D convection diffusion equations with high Reynolds number, respectively. In addition, the residual scaling technique is also applied for high Reynolds number problems. To further optimize the multiscale computation procedure, we developed two new methods. The first method is developed to solve the FOC solutions on two grids using standardW-cycle structure. The novelty of this strategy is that we use the coarse level grid that will be generated in the standard geometric multigrid to solve the discretized equations and achieve higher order accuracy solution. It is more efficient and costs less CPU and memory compared with the V-cycle based multiscale multigrid method. The second method is called the multiple coarse grid computation. It is first proposed in superconvergent multigrid method to speed up the convergence. The basic idea of multigrid superconvergent method is to use multiple coarse grids to generate better correction for the fine grid solution than that from the single coarse grid. However, as far as we know, it has never been used to increase the order of solution accuracy for the fine grid. In this dissertation, we use the idea of multiple coarse grid computation to approximate the fourth order solutions on every coarse grid and fine grid. Then we apply the Richardson extrapolation for every fine grid point to get the sixth order solutions. For parallel implementation, we studied the parallelization and vectorization potential of the Gauss-Seidel relaxation by partitioning the grid space with four colors for solving 3D convection-diffusion equations. We used OpenMP to parallelize the loops in relaxation and residual computation. The numerical results show that the parallelized and the sequential implementation have the same convergence rate and the accuracy of the computed solutions.
2

Efficient Variable Mesh Techniques to solve Interior Layer Problems

Mbayi, Charles K. January 2020 (has links)
Philosophiae Doctor - PhD / Singularly perturbed problems have been studied extensively over the past few years from different perspectives. The recent research has focussed on the problems whose solutions possess interior layers. These interior layers appear in the interior of the domain, location of which is difficult to determine a-priori and hence making it difficult to investigate these problems analytically. This explains the need for approximation methods to gain some insight into the behaviour of the solution of such problems. Keeping this in mind, in this thesis we would like to explore a special class of numerical methods, namely, fitted finite difference methods to determine reliable solutions. As far as the fitted finite difference methods are concerned, they are grouped into two categories: fitted mesh finite difference methods (FMFDMs) and the fitted operator finite difference methods (FOFDMs). The aim of this thesis is to focus on the former. To this end, we note that FMFDMs have extensively been used for singularly perturbed two-point boundary value problems (TPBVPs) whose solutions possess boundary layers. However, they are not fully explored for problems whose solutions have interior layers. Hence, in this thesis, we intend firstly to design robust FMFDMs for singularly perturbed TPBVPs whose solutions possess interior layers and to improve accuracy of these approximation methods via methods like Richardson extrapolation. Then we extend these two ideas to solve such singularly perturbed TPBVPs with variable diffusion coefficients. The overall approach is further extended to parabolic singularly perturbed problems having constant as well as variable diffusion coefficients. / 2023-08-31
3

Accurate Calculations of Nonlinear Optical Properties Using Finite Field Methods

Mohammed, Ahmed A. K. 11 1900 (has links)
Molecular nonlinear optical (NLO) properties are extensively studied using both theory and experiment because of their use in myriad applications. Experimental measurements of the most interesting molecules’ NLO properties are difficult, so experimental data for molecules with desirable NLO properties is scarce. Theoretical tools don’t suffer from the same limitations and can provide significant insights into the physico-chemical phenomena underlying the nonlinear responses, can help in interpreting response behaviour of molecules, and can guide design the materials with desirable response properties. Here, I present my work on developing methods for accurately calculating the NLO properties of molecules using the finite field (FF) approach. The first chapter provides a background for the finite field and electronic structure methods used in this dissertation. Chapter two is a thorough investigation of the finite field method. The limitations of the method are highlighted and the optimal conditions for overcoming its drawbacks and obtaining meaningful and accurate results are described. Chapter three presents the first systematic study of the dependence of optimal field strengths on molecular descriptors. The first protocol for predicting the optimal field for the second hyperpolarizability is presented and successfully tested, and the dependence of the optimal field strength for the first hyperpolarizability on the molecular structure is investigated. Chapter four is an assessment of various DFT functionals in calculating the second hyperpolarizabilities of organic molecules and oligomers. This study shows the limitations of conventional DFT methods and the importance of electron correlation to response properties. In chapter five we present a new method of calculating NLO properties using a rational function model that is shown to be more robust and have lower computational cost than the traditional Taylor expansion. Finally, chapter six includes a summary of the thesis and an overview of future work. / Thesis / Doctor of Philosophy (PhD)
4

Extrapolation-based Discretization Error and Uncertainty Estimation in Computational Fluid Dynamics

Phillips, Tyrone 26 April 2012 (has links)
The solution to partial differential equations generally requires approximations that result in numerical error in the final solution. Of the different types of numerical error in a solution, discretization error is the largest and most difficult error to estimate. In addition, the accuracy of the discretization error estimates relies on the solution (or multiple solutions used in the estimate) being in the asymptotic range. The asymptotic range is used to describe the convergence of a solution, where an asymptotic solution approaches the exact solution at a rate proportional to the change in mesh spacing to an exponent equal to the formal order of accuracy. A non-asymptotic solution can result in unpredictable convergence rates introducing uncertainty in discretization error estimates. To account for the additional uncertainty, various discretization uncertainty estimators have been developed. The goal of this work is to evaluation discretization error and discretization uncertainty estimators based on Richardson extrapolation for computational fluid dynamics problems. In order to evaluate the estimators, the exact solution should be known. A select set of solutions to the 2D Euler equations with known exact solutions are used to evaluate the estimators. Since exact solutions are only available for trivial cases, two applications are also used to evaluate the estimators which are solutions to the Navier-Stokes equations: a laminar flat plate and a turbulent flat plate using the k-Ï SST turbulence model. Since the exact solutions to the Navier-Stokes equations for these cases are unknown, numerical benchmarks are created which are solutions on significantly finer meshes than the solutions used to estimate the discretization error and uncertainty. Metrics are developed to evaluate the accuracy of the error and uncertainty estimates and to study the behavior of each estimator when the solutions are in, near, and far from the asymptotic range. Based on the results, general recommendations are made for the implementation of the error and uncertainty estimators. In addition, a new uncertainty estimator is proposed with the goal of combining the favorable attributes of the discretization error and uncertainty estimators evaluated. The new estimator is evaluated using numerical solutions which were not used for development and shows improved accuracy over the evaluated estimators. / Master of Science
5

Richardson Extrapolation-Based High Accuracy High Efficiency Computation for Partial Differential Equations

Dai, Ruxin 01 January 2014 (has links)
In this dissertation, Richardson extrapolation and other computational techniques are used to develop a series of high accuracy high efficiency solution techniques for solving partial differential equations (PDEs). A Richardson extrapolation-based sixth-order method with multiple coarse grid (MCG) updating strategy is developed for 2D and 3D steady-state equations on uniform grids. Richardson extrapolation is applied to explicitly obtain a sixth-order solution on the coarse grid from two fourth-order solutions with different related scale grids. The MCG updating strategy directly computes a sixth-order solution on the fine grid by using various combinations of multiple coarse grids. A multiscale multigrid (MSMG) method is used to solve the linear systems resulting from fourth-order compact (FOC) discretizations. Numerical investigations show that the proposed methods compute high accuracy solutions and have better computational efficiency and scalability than the existing Richardson extrapolation-based sixth order method with iterative operator based interpolation. Completed Richardson extrapolation is explored to compute sixth-order solutions on the entire fine grid. The correction between the fourth-order solution and the extrapolated sixth-order solution rather than the extrapolated sixth-order solution is involved in the interpolation process to compute sixth-order solutions for all fine grid points. The completed Richardson extrapolation does not involve significant computational cost, thus it can reach high accuracy and high efficiency goals at the same time. There are three different techniques worked with Richardson extrapolation for computing fine grid sixth-order solutions, which are the iterative operator based interpolation, the MCG updating strategy and the completed Richardson extrapolation. In order to compare the accuracy of these Richardson extrapolation-based sixth-order methods, truncation error analysis is conducted on solving a 2D Poisson equation. Numerical comparisons are also carried out to verify the theoretical analysis. Richardson extrapolation-based high accuracy high efficiency computation is extended to solve unsteady-state equations. A higher-order alternating direction implicit (ADI) method with completed Richardson extrapolation is developed for solving unsteady 2D convection-diffusion equations. The completed Richardson extrapolation is used to improve the accuracy of the solution obtained from a high-order ADI method in spatial and temporal domains simultaneously. Stability analysis is given to show the effects of Richardson extrapolation on stable numerical solutions from the underlying ADI method.
6

Higher Order Numerical Methods for Singular Perturbation Problems.

Munyakazi, Justin Bazimaziki. January 2009 (has links)
<p>In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We &macr / nd that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis</p>
7

Higher Order Numerical Methods for Singular Perturbation Problems.

Munyakazi, Justin Bazimaziki. January 2009 (has links)
<p>In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We &macr / nd that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis</p>
8

Higher order numerical methods for singular perturbation problems

Munyakazi, Justin Bazimaziki January 2009 (has links)
Philosophiae Doctor - PhD / In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We find that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis. / South Africa

Page generated in 0.1151 seconds