• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rigidez de planos projetivos minimizantes de área em 3-Variedades / Stiffness of projective planes minimizing area in 3-Varieties

Campos, Geovan Carlos Mendonça 31 March 2016 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-13T17:29:47Z No. of bitstreams: 1 GeovanCampos.pdf: 458133 bytes, checksum: 442b76b0f10e2ef37624745cce5924a3 (MD5) / Made available in DSpace on 2017-06-13T17:29:47Z (GMT). No. of bitstreams: 1 GeovanCampos.pdf: 458133 bytes, checksum: 442b76b0f10e2ef37624745cce5924a3 (MD5) Previous issue date: 2016-03-31 / In this work, we talk about the article "Area-Minimizing Projective Planes in 3- Manifolds" due to Hubert Bray, Simon Brendle, Michael Eichmair and Andr´e Neves. In this article they consider a compact Riemannian 3-manifold (M; g) with positive scalar curvature and an embedded projective plane. In these conditions they prove a higher estimate of curvature, in term of infimum of the scalar curvature of (M; g), for the area of the projective plane that has the smallest area within the class of all surfaces Σ ⊂ M homeomorphic to projective plane. Furthermore, they prove that this inequality is great. More precisely, they get that if this equality hold in (M 3; g), so M is isometric to the three-dimensional projective space RP3 with constant sectional curvature. / Neste trabalho, dissertamos sobre o artigo "Area-minimizing Projective Planes in 3-Manifolds" devido a Hubert Bray, Simon Brendle, Michael Eichmair e André Neves. Neste artigo eles consideram uma 3-variedades Riemannianas compactas (M³, g) com curvatura escalar positiva e que admitem planos projetivos mergulhados. Nestas condições eles provam uma estimativa superior, em termo do ínfimo da curvatura escalar de (M; g), para a área do plano projetivo que possui a menor área dentro da classe de todas as superfícies Σ ⊂ M homeomorfas ao plano projetivo. Além disso, eles provam que esta desigualdade é ótima. Mais precisamente, eles obtém que se a igualdade ocorre então a variedade Riemanniana (M³, g) é isométrica ao espaço projetivo tridimensional RP3 coma métrica de curvatura seccional constante.

Page generated in 0.0778 seconds