• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 27
  • 11
  • 11
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 229
  • 229
  • 131
  • 57
  • 45
  • 40
  • 36
  • 36
  • 32
  • 30
  • 29
  • 26
  • 24
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Solid-state nuclear magnetic resonance spectroscopy of phosphazene polymers

Borisov, Alexey S., University of Lethbridge. Faculty of Arts and Science January 2009 (has links)
High-resolution one-dimensional 1H, 19F, 31P and 13C MAS NMR experiments were used in a morphological study of solvent-cast and heat-treated poly[bis(trifluoroethoxy)phosphazene] (PBFP). Deconvolution analyses performed on all Nuclear Magnetic Resonance (NMR) spectra are presented. These results suggest the presence of broad and narrow overlapping components at ambient temperature, which were assigned to the crystalline, amorphous and the mesophase regions within the polymer, respectively. The number of signals in the spectra was independently verified using 1H, 19F and 13C Discrimination Induced by Variable Amplitude Minipulses (DIVAM) nutation experiments. Deconvolution analyses showed that heat-treatment increases the overall crystallinity of the solvent-cast PBFP. Further studies conducted on two preparations of the polymer showed significant differences in crystallinity due to variations in the reaction conditions. Magic-Angle Spinning (MAS) NMR spectra of PBFP obtained via living cationic polymerization at ambient temperature indicated that the polymer contains mostly amorphous and mesophase regions with only a small contribution from the crystalline domain. Variable-temperature 31P NMR experiments suggested that the thermotropic transition occurs in a temperature range of 80ºC to 90ºC, where the crystalline signal disappears and a new signal due to a liquid crystalline phase emerges. Spin-lock 31P experiments provided rates of the transverse relaxation in the rotating frame for each signal, showing that the crystalline and the amorphous regions within the polymer are characterized by significantly different mobilities at ambient temperatures, while the v comparable degree of motion occurs between the amorphous and mesophase environments at temperatures above 90ºC. The process of thermal ring-opening polymerization of hexachlorocyclotriphosphazene was monitored using one-dimensional 31P MAS NMR at different stages of the reaction. The ratio between cyclic species and the high molecular weight poly(dichlorophosphazene) was seen to change over time. 31P NMR was seen to be a potentially valuable tool in monitoring rates of chain propagation, branching and cross-linking. Two-dimensional 31P homonuclear Radio-Frequency Driven Recoupling (RFDR) and Incredible Natural Abundance Double Quantum Transfer (INADEQUATE) MAS NMR experiments were first tested on the partially phenoxy-substituted hexachlorocyclotriphosphazene, and subsequently applied in the study of a preparation of the partially trifluoroethoxy-substituted poly(dichlorophosphazene). Very high resolution was obtained in the direct dimension due to the presence of low molecular weight species. Preliminary spectral assignments of all of the observed signals were made on the basis of both known chemical shifts of the related species, and the through-space and through-bond phosphorous-phosphorous connectivities. / xiii, 188 leaves : ill. ; 29 cm
82

Developing Glycopeptide based nanocarriers by ring opening polymerization for drug delivery applications

Hasan, Mohammad Nazmul January 2014 (has links)
Synthetic glycopeptides have attracted much interest in the biomedical field due to their structural similarities to the natural glycopeptides or glycoproteins. It is still difficult to synthesize glycopeptides with greater efficiency and ring opening polymerization remains an effective way to do so. Proteoglycans are a special class of glycoproteins with glycosaminoglycan chains. In this study, I tried to do controlled ring opening polymerization of Hyaluronic acid derivatives with smaller to higher molecular weight while avoiding side reactions. It is challenging to work with higher molecular weight molecules and do a click reaction in water effectively. Making nanopolymers with a desired size, studies of the characteristics, and how to build nanocarriers for drug delivery application was the focus of this work. Polymeric characteristics, e.g., modification and polymer formation were studied by nuclear magnetic resonance technique; Particle size was studied by dynamic light scattering and the loading of rhodamine B encapsulated into the polymer was measured by confocal imaging technique.
83

Studies of Metathesis for Materials Applications: Present and Future Possibilities

Marleau-Gillette, Joshua 23 January 2013 (has links)
Compounds containing multiple metal-carbon bonds are now widely used as catalysts for organic and materials synthesis. Among such transformations, olefin metathesis (OM) occupies a position of pre-eminent significance. Alkyne metathesis holds great promise, but remains in a much lower state of development. The OM-directed work in this thesis sought to advance the state of the art in living, Ru-catalyzed ringopening metathesis polymerizations (ROMP). Currently, the first- and third-generation Grubbs initiators, which exhibit the ease of handling characteristic of the late metal ruthenium, dominate ROMP applications. These initiators are characterized by extremes of reactivity, however. We describe the first ruthenium initiator capable of living ROMP at RT, irrespective of monomer bulk. Polydispersity indices as low as 1.03 are routinely attainable, and excellent control is maintained in synthesis of diblock copolymers from sterically demanding and sterically unencumbered monomers. Work on alkyne metathesis sought to expand existing understanding of the features that influence stability and reactivity in ruthenium carbynes. A classification system was developed in which Class A carbynes were defined as those that readily undergo conversion into an M=C entity (e.g. vinylidene, allenylidene, or alkylidene); Class B carbynes those that have a stable carbyne functionality. Four Ru carbyne complexes, all initially regarded as prospective Class B carbynes, were selected for study. Investigation of their reactivity resulted in categorization of several as Class A species, and development of design criteria that may open the door to assembly of stable, well-defined carbyne complexes of ruthenium.
84

Synthesis of selected cage alkenes and their attempted ring-opening metathesis polymerisation with well-defined ruthenium carbene catalysts / Justus Röscher

Röscher, Justus January 2011 (has links)
In this study a number of cage alkenes were synthesised and tested for activity towards ringopening metathesis polymerisation (ROMP) with the commercially available catalysts 55 (Grubbs-I) and 56 (Grubbs-II). The first group of monomers are derivatives of tetracyclo[6.3.0.04,1105,9]undec-2-en-6-one (1). The synthesis of these cage alkenes are summarised in Scheme 7.1. The cage alkene 126b was synthesised by a Diels-Alder reaction between 1 and hexachlorocyclopentadiene (9, Scheme 7.2). The geometry of 126b was determined from XRD data. Knowledge of the geometry of 126b also established the geometry of 127 since conformational changes during the conversion from 126b to 127 are unlikely. Synthesis of the cage alkene 125 by the cycloaddition of 9 to 118 failed. The cage alkene exo-11- hydroxy-4,5,6,7,16,16-hexachlorohexacyclo[7.6.1.03,8.02,13.010,14]hexa-dec-5-ene (124, Scheme 7.3) could therefore not be prepared. Synthesis of 125 by reduction of 126b with various reduction systems was not successful. Theoretical aspects of these reactions were investigated with molecular modelling. A possible explanation for the unreactive nature of 126b towards reduction is presented, but the lack of reactivity of 118 towards 9 eluded clear explanations. The synthesis of cage alkenes from 4-isopropylidenepentacyclo[5.4.0.02,6.03,10.05,9]-undecane-8,11- dione (23) did not meet with much success (Scheme 7.4). Numerous synthetic methods were investigated to affect the transformation from 134a/134b to 135 (Scheme 7.5). These attempts evolved into theoretical investigations to uncover the reasons for the observed reactivity. Possible explanations were established by considering the differences and similarities between the geometries and electronic structures of reactive and unreactive cage alcohols. ROMP of cage monomers based on 1 were mostly unsuccessful. Only the cage monomer 127 showed some reactivity. Endocyclic cage monomers with a tetracycloundecane (TCU) framework showed no reactivity. The results from NMR experiments verified the experimental results. Hexacyclo[8.4.0.02,9.03,13.04,7.04,12]tetradec-5-en-11,14-dione (3) exhibited notable ROMP reactivity. Examination of the orbitals of the cage alkenes used in this study suggested that the reactivity of 1 and 3 could possibly be enhanced by removal of the carbonyl groups. Decarbonylation of 1 and 3 yielded the cage hydrocarbons 159 and 175, respectively. ROMP tests revealed that 175 is an excellent monomer, but 159 was unreactive. The results obtained for the ROMP reactions in this study was rationalised by considering aspects such as ring strain, energy profiles, steric constraints, and frontier orbital theory. The concept of ring strain is less useful when describing the reactivity of cage alkenes towards ROMP and therefore the concepts of fractional ring strain and fractional ring strain energy (RSEf) were developed. A possible link between RSEf and the ROMP reactivity of cage alkenes was also established. The following criteria were put forth to predict the reactivity or explain the lack of reactivity of cage alkenes towards ROMP reactions with Grubbs-I and Grubbs-II. The criteria for ROMP of cage monomers: 1. Sufficient fractional ring strain energy (RSEf). 2. A reasonable energy profile when compared to a reference compound such as cyclopentene. 3. Ability to form a metallacyclobutane intermediate with reasonable distances between different parts of the cage fragment. 4. Sufficient ability of the polymer fragment to take on a conformation that exposes the catalytic site. 5. Sufficient size, shape, orientation and energy of HOMO and/or NHOMO at the alkene functionality of the cage monomer and of the LUMO at the catalytic site. / Thesis (Ph.D. (Chemistry))--North-West University, Potchefstroom Campus, 2012
85

Development of real-time mechanistic tools for the elucidation of catalytic reaction mechanisms

Stoddard, Rhonda Louise 15 August 2014 (has links)
The mechanism of a conjugate addition of an alcohol to an alkynic acid ester using a phosphine catalyst was investigated using pressurized sample infusion electrospray ionization mass spectrometry (PSI-ESI-MS) and proton and phosphorus nuclear magnetic resonance (NMR) experiments. Since ESI-MS only detects charged species, and only the phosphonium intermediates and by-products were visible by ESI-MS, 1H NMR was used to track the disappearance of the starting alkyne and the appearance of the conjugate addition product over time. 31P NMR was used to quantify the ESI-MS results. By-product formation was shown to out-compete product formation upon fast addition of alkyne, but with dropwise addition of alkyne, product was shown to dominate. A detailed numerical model was developed using PowerSim software to test mechanistic hypotheses. The experimental results were shown to be consistent with the mechanism proposed by Inanaga, and the cycle was elaborated to account for by-product formation. Piers’catalyst, a ruthenium complex with a phosphonium-functionalized carbene ligand, is a fast-initiating living catalyst for a number of olefin metathesis reactions, including ring-opening metathesis polymerization (ROMP) and cross metathesis (CM). Catalyst speciation was monitored in real-time for the ROMP of norbornene and the CM of 1-hexene using PSI-ESI-MS. The expected mass distribution of charged polymer-catalyst species were not observed, but merely catalyst and decomposition species were visible by ESI-MS. NMR and gel permeation chromatography (GPC) were used to determine quantitatively the presence of polymer and the polydispersity index, respectively. The results suggest that while Piers’ catalyst is indeed fast-initiating, the propagation rate greatly outstrips the initiation rate. In a foray into the area of chemical education, a well-known pH-induced colour change exhibited by the anthocyanins in red cabbage was developed into a simple – and ingestible – classroom demonstration. / Graduate / 0485
86

Development Of New Synthetic Strategies For Aminocyclitols

Demir (davulcu), Emine 01 January 2003 (has links) (PDF)
Cyclitols are of great importance due to their biological activities playing a crucial role in living organisms as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. In this study, new synthetic strategies leading to the aminocyclitols were investigated. The synthesis of aminoconduritol and aminoinositol derivatives (173 and 174) were achieved starting from easily available compound, 7-oxa-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride (166) obtained from the Diels-Alder reaction of furan and maleic anhydride. The anhydride functionality in 166 was converted into the half-ester 169 by desymmetrization in methanol. The carboxylic acid moiety in the molecule was used to obtain urethane functionality by making use of Curtius rearrangement. After the cleavage of oxa-bridge with the help of a Lewis acid the aminoconduritol derivative 173 was synthesized. The cis-dihydroxylation of 173 with osmium tetroxide resulted in the formation of inositol derivative 174. Consequently, we developed a new methodology for the synthesis of aminocyclitol derivatives.
87

Studies of Metathesis for Materials Applications: Present and Future Possibilities

Marleau-Gillette, Joshua 22 January 2013 (has links)
Compounds containing multiple metal-carbon bonds are now widely used as catalysts for organic and materials synthesis. Among such transformations, olefin metathesis (OM) occupies a position of pre-eminent significance. Alkyne metathesis holds great promise, but remains in a much lower state of development. The OM-directed work in this thesis sought to advance the state of the art in living, Ru-catalyzed ringopening metathesis polymerizations (ROMP). Currently, the first- and third-generation Grubbs initiators, which exhibit the ease of handling characteristic of the late metal ruthenium, dominate ROMP applications. These initiators are characterized by extremes of reactivity, however. We describe the first ruthenium initiator capable of living ROMP at RT, irrespective of monomer bulk. Polydispersity indices as low as 1.03 are routinely attainable, and excellent control is maintained in synthesis of diblock copolymers from sterically demanding and sterically unencumbered monomers. Work on alkyne metathesis sought to expand existing understanding of the features that influence stability and reactivity in ruthenium carbynes. A classification system was developed in which Class A carbynes were defined as those that readily undergo conversion into an M=C entity (e.g. vinylidene, allenylidene, or alkylidene); Class B carbynes those that have a stable carbyne functionality. Four Ru carbyne complexes, all initially regarded as prospective Class B carbynes, were selected for study. Investigation of their reactivity resulted in categorization of several as Class A species, and development of design criteria that may open the door to assembly of stable, well-defined carbyne complexes of ruthenium.
88

Indium complexes and their role in the ring-opening polymerization of lactide

Douglas, Amy Frances 05 1900 (has links)
The synthesis and characterization of a series of chiral indium complexes bearing a tridentate NNO ligand are reported. The ligand 2-[[[(dimethylamino)cyclohexyl]amino]methyl]- 4,6-bis(tert-butyl) phenol (H₂NNO) was synthesized via a previously published procedure and bound to indium by both a protonolysis and salt metathesis route. A dimethylated indium complex (NNO)InMe₂ (1) was isolated by reaction of InMe₃ with H₂NNO. A one-pot saltmetathesis route was used to produce a unique mixed-bridge dinuclear indium complex [(NNO)InCl] ₂(μ-OEt)(μ-Cl) (3) from a mixture of indium trichloride, potassium ethoxide and the monopotassiated salt of the ligand, KH(NNO). Direct reaction of KH(NNO) and indium trichloride resulted in the formation of (NNO)InCl₂ (4) which was carried forward to 3 by reaction with sodium ethoxide. The complex 3 is active for the ROP of β-butyrolactone ε-caprolactone and lactide and is the first reported indium-based catalyst for lactide or β-butyrolactone ROP. Kinetic studies of 3 for ROP of LA revealed that catalyst was well-behaved, and that the rate was first order with regard to lactide and catalyst. The enthalpy and entropy of activation for the ROP were experimentally determined. Polymer produced by ROP by 3 has narrow molecular weight distribution and a good correlation is seen between the observed moleular weight and monomer loading. A mechanism was proposed for 3 acting as a catalyst for the ROP of lactide; however further experiments are required to confirm this mechanism. Polymer samples isolated from the ROP of rac-lactide by rac-3 show isotactic enrichment. It is postulated that the chiral catalyst 3 is exerting stereocontrol via an enantiomorphic site control mechanism.
89

A Computational Investigation of the Biosynthesis of Lanosterol

Townsend, Michael Arthur Edward January 2006 (has links)
The biosynthesis of the steroid precursor molecule lanosterol is a remarkable process in which the enzyme-bound substrate 2,3-S-oxidosqualene forms four new carbocyclic rings by a cascade of cation-alkene addition reactions, followed by a series of 1,2-methyl and hydride shifts. The work presented in this thesis is a computational study of the reactions of compounds designed to model the oxidosqualene-lanosterol cyclisation in order to establish details of the mechanism of this amazing cyclisation. The initiation of oxidosqualene cyclisation has been modelled by the intermolecular reaction of protonated oxirane and methylpropene. The SN2-like ring opening of the protonated epoxide is strongly exothermic with a low barrier to reaction; the geometry of the gas phase reaction has been found to be significantly affected by hyperconjugative stabilisations and low energy steric interactions. The energy profile and geometry of this reaction can now be compared to analogous intramolecular reactions such as the formation of the lanosterol A-ring. The competing five- and six-membered cyclisations of a series of substituted A-ring model compounds was investigated. It has been found that the facile cleavage of the protonated epoxide causes the reaction to behave more as an electrophilic addition than as a nucleophilic ring-opening substitution. This behaviour accounts for the general preference of protonated epoxides to react at the more substituted carbon atom, while epoxides in neutral or basic media react at the least sterically hindered carbon. With consideration for Baldwin's rules for ring closure, it is seen that the series of model compounds generally favours six-membered ring formation endo at the epoxide. The formation of the lanosterol B-ring was studied using a bicyclic model system. Previous computational studies had predicted the B-ring to close with readily with an activation energy of less than 1 kcal mol-1, however the present study has found a significant barrier to cyclisation of ca. 5-7 kcal mol-1 in this gas-phase model at the HF/6-31G(d) level of theory. This barrier is thought to arise from the closure of the B-ring in a sterically hindered twist-boat conformation.
90

Ingénierie macromoléculaire par ROP organocatalysée : application à l'étude de la nanostructuration de nouveaux copolymères à blocs biodégradables / Macromolecular engineering by organocatalyzed rop : application to nanostructuration studies of new biodegradable block copolymers

Kayser, Franck 17 May 2017 (has links)
Ce travail de thèse s'inscrit dans le cadre d'une collaboration entre Arkema - Groupe de Recherches de Lacq (GRL) et le Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA) et porte sur la synthèse et l'étude de la nanostructuration de copolymères à blocs constitués d'au moins un bloc biodégradable en vue de préparer des masques de gravure par nano-lithographie. Le premier chapitre est dédié à la description des approches lithographiques développées afin de faire le point sur les principales avancées ainsi que sur les verroux technologiques à lever concernant la miniaturisation des composants électroniques via les approches top-down et bottom-up. Un intérêt particulier a été porté sur l'approche bottom-up reposant sur l'auto-assemblage dirigé de copolymères à blocs étant donné que des morphologies bien définies et de faibles dimensions sont accessibles. Les propriétés du PS-b-PMMA ainsi que celles de copolymères à blocs constitués d'un bloc biodégradable sont également discutées afin de souligner l'importance du développement de nouveaux copolymères à blocs. La deuxième partie de ce manuscrit porte sur la synthèse et la caractérisation de copolymères à blocs par polymérisation organocatalysée et contrôlée par ouverture de cycle (ROP) de lactones et de carbonates. Une étude de la nanostructuration de copolymères à blocs composés de poly(ε-caprolactone), de poly(β-butyrolactone) ou de poly(triméthylène carbonate) a été réalisée afin d'évaluer les morphologies ainsi que les espacements de domaines correspondants. La forte incompatibilité des blocs des copolymères synthétisés a permis l'observation de nanostructurations lamellaires et cylindriques ayant des espacements de domaines de l'ordre d'une dizaine de nanomètre. Nous avons également remarqué que la cristallisation du bloc de poly(ε-caprolactone) empêche la nanostructuration à grande échelle des copolymères correspondants. Dans une troisième partie, nous avons tout d'abord cherché à inhiber la cristallisation de la poly(ε-caprolactone) par copolymérisation aléatoire. Une évaluation de la réactivité du co-monomère, ainsi que du taux minimum requis pour rompre totalement la cristallinité du copolymère, en fonction de la structure du co-monomère employé a été effectuée. La synthèse de copolymères à blocs constitués d'un bloc de copolyester aléatoire amorphe ("PCLam.") a par la suite été réalisée pour évaluer l'impact de l'inhibition de la cristallinité sur la nanostructuration de ces nouveaux copolymères à blocs. Cette stratégie a permis la ségrégation de phase en nano-domaines de géométries bien définies. Des morphologies cylindriques présentant un espacement de domaines compris entre 15,3 et 19 nm ont été déterminées par analyses SAXS et par microscopie (AFM) dans le cas de films minces préparés à partir de "PCLam."-b-Krasol H-b-"PCLam.". / The present work is in the frame of a collaboration between Arkema - Groupe de Recherche de Lacq (GRL) and the Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA). This work consists in the preparation of block copolymers containing at least one biodegradable block in order to study their nanostructuration aiming at preparing etching mask by nanolithography. The first part of this work is dedicated to the description of lithographic processes in order to summarize the major advances and the technological bolts to unlock concerning the electronic component miniaturization by top-down and bottom-up approaches. Particular interest has been given to the bottom-up approach based on the direct self-assembly of block copolymer due to the fact that well defined morphologies are accessible at small scale. The properties of the PS-b-PMMA as well as those of block copolymers containing one biodegradable block are also discussed to underline the importance of the development of new block copolymers. The second part of this manuscript concerns the synthesis and characterization of block copolymers by organocatalyzed controlled ring opening polymerization (ROP) of lactones and carbonates. A study of block copolymer nanostructuration has been performed for copolymers containing one block of poly(ε-caprolactone), poly(β-butyrolactone) or poly(trimethylene carbonate) in order to determine their morphologies and the corresponding domain-spacing. The high block incompatibility of the synthesized copolymers enables lammellar and cylindrical nanostructurations with domain-spacing in the order of ten nanometers. We also noticed that the crystallization of the poly(ε-caprolactone) block prevent the large-scale nanostructuration of the corresponding copolymers. In a third part, we got interested to inhibit poly(ε-caprolactone) crystallization by random copolymerization. Co-monomers reactivity and their minimal loading required to fully inhibit copolymer crystallinity have been determined to investigate the impact of co-monomer structure. Then, block copolymers containing one or two amorphous random copolyester block(s) have been synthesized to evaluate the impact of crystallinity inhibition on their nanostructuration ability. This strategy allowed the phase segregation in nano-domains of well defined geometries. Cylindrical morphologies presenting a domain spacing between 15.3 and 19 nm have been determined by SAXS analysis and microscopy (AFM) in the case of thin films prepared from "PCLam."-b-Krasol H-b-"PCLam.".

Page generated in 0.1957 seconds