• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • Tagged with
  • 16
  • 16
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design karoserie pneumobilu pro robotickou výrobu / Pneumobile car-body design for robotic fabrication

Vevera, Tomáš January 2019 (has links)
This thesis solves design of the pneumobile bodywork designated for robotic manufacturing using curved folding method. The thesis evaluates possibilities of this technology and issue of specific behaviour of CCF geometries. With intention to simplify and speedup the proces of designing, the suggestion of software tool for CCF geometry simulation is proposed. Obtained pieces of knowledge are being used in creating the prototype of designed solution using curved folding.
12

Design, fabrication, and testing of a hybrid vacuum-electric actuated robotic arm

Peng, Zeyuan January 2024 (has links)
his thesis presents the design, fabrication, and testing of a robotic arm that is inherently safe, lightweight and affordable. The arm’s three joints are driven by novel hybrid vacuum-electric actuators that each combine origami-inspired soft pneumatic actuators (OSPAs) with a DC motor. The arm is a type of collaborative robot, or cobot, that is suitable for low payload, low speed applications. The OSPA was redesigned in the first stage of the research. In particular, the new endcaps are 59% shorter than the previous design. This made the actuators more compact and increased their stroke-to-length ratio. Next, the OSPA fabrication process was significantly changed. The heating of the heat shrink tubing was changed from immersion in boiling water to heating with a heat gun, and a motorized stand with several assisting parts was developed. These changes improved the consistency of the fabrication, reduced the skills required, and improved the safety. The joints of the arm and its structural components were designed next. The rotation of each joint is achieved by connecting multiple OSPAs to custom-made pulleys using cables and connecting a DC motor in parallel using a timing belt. Joint 2, the shoulder joint, had to produce the largest torque. This was accomplished by applying optimization methods to design a variable-radius pulley. The prototype arm utilized laser-cut acrylic and 3D printed components to keep its cost and weight low. Finally, after a simple pressure control system was developed, the prototype arm’s performance was extensively tested. The joints’ ranges of motion, velocities, accelerations, and blocked torques are tested at multiple pressures and motor currents, and the results discussed. The thesis concludes with a summary of the research’s achievements and limitations, and recommendations for future improvements to the robotic arm’s design. / Thesis / Master of Applied Science (MASc) / This thesis presents the design, fabrication, and testing of a robotic arm that is inherently safe, lightweight and affordable. The arm’s three joints are driven by novel actuators that each combine soft pneumatic actuators (powered by vacuum pressure) with a DC motor. The arm is suitable for low payload, low speed applications. First, the pneumatic actuators were redesigned to make them more compact. Next, their fabrication process was changed to improve the consistency of the results, reduce the skills required, and improve the safety. The joints of the arm and its structural components were then designed. To produce the torque required for the shoulder joint, optimization methods were used to create a variable-radius pulley. The prototype arm utilized laser-cut acrylic and 3D-printed components to keep its cost and weight low. Finally, after a simple pressure control system was developed, the prototype arm’s performance was extensively tested.
13

Design Optimization for a Compliant,Continuum-Joint, Quadruped Robot

Sherrod, Vallan Gray 01 December 2019 (has links)
Legged robots have the potential to cover terrain not accessible to wheel-based robots and vehicles. This makes them better suited to perform tasks, such as search and rescue, in real-world unstructured environments. Pneumatically-actuated, compliant robots are also more suited than their rigid counterparts to work in real-world unstructured environments with humans where unintentional contact may occur. This thesis seeks to combine the benefits of these two type of robots by implementing design methods to aid in the design choice of a 16 degree of freedom (DoF) compliant, continuum-joint quadruped. This work focuses on the design optimization, especially the definition of design metrics, for this type of robot. The work also includes the construction and closed-loop control of a four-DoF continuum-joint leg used to validate design methods.We define design metrics for legged robot metrics that evaluate their ability to traverse unstructured terrain, carry payloads, find stable footholds, and move in desired directions. These design metrics require a sampling of a legged-robot's complete configuration space. For high-DoF robots, such as the 16-DoF in evaluated in this work, the evaluation of these metrics become intractable with contemporary computing power. Therefore, we present methods that can be used to simplify and approximate these metrics. These approximations have been validated on a simulated four-DoF legged robot where they can tractably be compared against their full counterparts.Using the approximations of the defined metrics, we have performed a multi-objective design optimization to investigate the ten-dimensional design space of a 16-DoF compliant, continuum-joint quadruped. The design variables used include leg link geometry, robot base dimensions, and the leg mount angles. We have used an evolutionary algorithm as our optimization method which converged on a Pareto front of optimal designs. From these set of designs, we are able to identify the trade-offs and design differences between robots that perform well in each of the different design metrics. Because of our approximation of the metrics, we were able to perform this optimization on a supercomputer with 28 cores in less than 40 hours.We have constructed a 1.3 m long continuum-joint leg from one of the resulting quadruped designs of the optimization. We have implemented configuration estimation and control and force control on this leg to evaluate the leg payload capability. Using these controllers, we have conducted an experiment to compare the leg's ability to provide downward force in comparison with its theoretical payload capabilities. We then demonstrated how the torque model used in the calculation of payload capabilities can accurately calculate trends in force output from the leg.
14

Návrh robotické buňky pro svařování a manipulaci / Design of a Robotic Cell for Welding and Manipulation

Lukačovič, Peter January 2018 (has links)
The purpose of this master’s thesis is a design of the robotic cell for spot welding followed by manipulation with parts assigned for automotive industry. The cell should consist of a rotary table operated by a process operator and set of six-axis robots for spot welding and manipulation with parts. The thesis also describes the design of the end effectors of all robots, the design of rotary table with regard to welding technology and configuration of the cell to obtain maximal efficiency. The output of the thesis is 3D model, workflow simulation, evaluation of the production times and operator work conditions.
15

Konstrukce kráčejícího mobilního robotu / Design of walking mobile robot

Szabari, Mikuláš January 2018 (has links)
The diploma thesis deals with the construction of a walking mobile robot, which is intended for passing through a rugged or forest terrain, whose task is to collect the sample. The first part is devoted to the review of walking robots. Follow-up an analysis of two-legged and four-leg walking robot technologies and a brief overview of drives. The second part is devoted to problem analysis and design variant. The work contains 4 design variants in the form of schemes. Using the multi-criteria analysis, the variants were evaluated and the optimal variant was chosen taking into account the representative parameters. The third part is devoted to the construction of the chosen variant, it is divided into body and leg construction. The overall design is processed in the form of a virtual 3D model. In the leg construction, the design itself, but also the calculations of drives, shafts, gears and belt transmissions are solved. The end of the thesis is devoted to drawing documentation based on 3D model and economic evaluation. Follow-up and discussion with possible continuation and use in practice.
16

A Low-Cost Social Companion Robot for Children with Autism Spectrum Disorder

Velor, Tosan 11 November 2020 (has links)
Robot assisted therapy is becoming increasingly popular. Research has proven it can be of benefit to persons dealing with a variety of disorders, such as Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and it can also provide a source of emotional support e.g. to persons living in seniors’ residences. The advancement in technology and a decrease in cost of products related to consumer electronics, computing and communication has enabled the development of more advanced social robots at a lower cost. This brings us closer to developing such tools at a price that makes them affordable to lower income individuals and families. Currently, in several cases, intensive treatment for patients with certain disorders (to the level of becoming effective) is practically not possible through the public health system due to resource limitations and a large existing backlog. Pursuing treatment through the private sector is expensive and unattainable for those with a lower income, placing them at a disadvantage. Design and effective integration of technology, such as using social robots in treatment, reduces the cost considerably, potentially making it financially accessible to lower income individuals and families in need. The Objective of the research reported in this manuscript is to design and implement a social robot that meets the low-cost criteria, while also containing the required functions to support children with ASD. The design considered contains knowledge acquired in the past through research involving the use of various types of technology for the treatment of mental and/or emotional disabilities.

Page generated in 0.2507 seconds