• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Dynamic Models of Robot Force Control

Eppinger, Steven D., Seering, Warren P. 01 July 1986 (has links)
For precise robot control, endpoint compliance strategies utilize feedback from a force sensor located near the tool/workpiece interface. Such endpoint force control systems have been observed in the laboratory to be limited to unsatisfactory closed-loop performance. This paper discusses the particular dynamic properties of robot systems which can lead to instability and limit performance. A series of lumped-parameter models is developed in an effort to predict the closed-loop dynamics of a force-controlled single axis arm. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics. The qualitative analysis shows that the robot dynamics contribute to force-controlled instability. Recommendations are made for models to be used in control system design.
2

Elastic Cable-Driven Bipedal Walking Robot: Design, Modeling, Dynamics and Controls

Kljuno, Elvedin January 2012 (has links)
No description available.
3

Enabling Successful Human-Robot Interaction Through Human-Human Co-Manipulation Analysis, Soft Robot Modeling, and Reliable Model Evolutionary Gain-Based Predictive Control (MEGa-PC)

Jensen, Spencer W. 11 July 2022 (has links)
Soft robots are inherently safer than traditional robots due to their compliance and high power density ratio resulting in lower accidental impact forces. Thus they are a natural option for human-robot interaction. This thesis specifically looked at human-robot co-manipulation which is defined as a human and a robot working together to move an object too large or awkward to be safely maneuvered by a single agent. To better understand how humans communicate while co-manipulating an object, this work looked at haptic interaction of human-human dyadic co-manipulation trials and studied some of the trends found in that interaction. These trends point to ways robots can effectively work with human partners in the future. Before successful human-robot co-manipulation with large-scale soft robots can be achieved, low-level joint angle control is needed. Low-level model predictive control of soft robot joints requires a sufficiently accurate model of the system. This thesis introduces a recursive Newton-Euler method for deriving the dynamics that is sufficiently accurate and accounts for flexible joints in an intuitive way. This model has been shown to be accurate to a median absolute error of 3.15 degrees for a three-link three-joint six degree of freedom soft robot arm. Once a sufficiently accurate model was developed, a gain-based evolutionary model predictive control (MPC) technique was formulated based on a previous evolutionary MPC technique. This new method is referred to as model evolutionary gain-based predictive control or MEGa-PC. This control law is compared to nonlinear evolutionary model predictive control (NEMPC). The new technique allows intentionally decreasing the control frequency to 10 Hz while maintaining control of the system. This is proven to help MPC solve more difficult problems by having the ability to extend the control horizon. This new controller is also demonstrated to work well on a three-joint three-link soft robot arm. Although complete physical human-robot co-manipulation is outside the scope of this thesis, this thesis covers three main building blocks for physical human and soft robot co-manipulation: human-human haptic communication, soft robot modeling, and model evolutionary gain-based predictive control.
4

Variable Stiffness Links for Collaborative Robots

Zhou, Yitong January 2020 (has links)
No description available.

Page generated in 0.0767 seconds