• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 11
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3D Visualization and Interactive Image Manipulation for Surgical Planning in Robot-assisted Surgery

Maddah, Mohammadreza 30 August 2018 (has links)
No description available.
2

Optimization of the polishing procedure by using a robot assisted polishing equipment

Faure-Vidal, Anaïs January 2009 (has links)
<p>Nowadays, the polishing process is one of the most important steps of the manufacturing of moulds and dies. Occupying up to 40% of the total production time and cost, it is decisive for the final appearance and quality of a surface. Because of its complexity, the polishing is mainly carried out manually; and the final quality depends of the expertise of the operator. That is why an automation of the polishing process is necessary.</p><p>The purpose of this project was to find out the optimized sequence of polishing for a Mirrax ESR steel (Uddeholm Tooling AB) using the Strecon RAP-200 (robot assisted polishing equipment). Using a Design of Experiment, the machine parameters were tested in order to better understand their influences and interactions. The report starts with a description of general polishing knowledge and ends up with the results from a Design of Experiment.</p><p>The information from this test are a first step in the evaluation of the Strecon RAP-200. Even if many results have been found out, only four parameters have been tested, and to be able to optimize the polishing sequence, further studies need to be carried out.</p>
3

Optimization of the polishing procedure by using a robot assisted polishing equipment

Faure-Vidal, Anaïs January 2009 (has links)
Nowadays, the polishing process is one of the most important steps of the manufacturing of moulds and dies. Occupying up to 40% of the total production time and cost, it is decisive for the final appearance and quality of a surface. Because of its complexity, the polishing is mainly carried out manually; and the final quality depends of the expertise of the operator. That is why an automation of the polishing process is necessary. The purpose of this project was to find out the optimized sequence of polishing for a Mirrax ESR steel (Uddeholm Tooling AB) using the Strecon RAP-200 (robot assisted polishing equipment). Using a Design of Experiment, the machine parameters were tested in order to better understand their influences and interactions. The report starts with a description of general polishing knowledge and ends up with the results from a Design of Experiment. The information from this test are a first step in the evaluation of the Strecon RAP-200. Even if many results have been found out, only four parameters have been tested, and to be able to optimize the polishing sequence, further studies need to be carried out.
4

A Semantic Interpreter for Multimodal and Multirobot Data

Käshammer, Philipp Florian January 2016 (has links)
Huge natural disaster events can be so devastating that they often overwhelm human rescuers and yet, they seem to occur more often. The TRADR (Long-Term Human-Robot Teaming for Robot Assisted Disaster Response) research project aims at developing methodology for heterogeneous teams composed of human rescuers as well as ground and aerial robots. While the robots swarm the disaster sites, equipped with advanced sensors, they collect a huge amount row-data that cannot be processed efficiently by humans. Therefore, in the frame of the here presented work, a semantic interpreter has been developed that crawls through the raw data, using state of the art object detection algorithms to identify victim targets and extracts all kinds of information that is relevant for rescuers to plan their missions. Subsequently, this information is restructured by a reasoning process and then stored into a high-level database that can be queried accordingly and ensures data constancy.
5

A Platform for Robot-Assisted Intracardiac Catheter Navigation

Ganji, Yusof January 2009 (has links)
Steerable catheters are routinely deployed in the treatment of cardiac arrhythmias. During invasive electrophysiology studies, the catheter handle is manipulated by an interventionalist to guide the catheter's distal section toward endocardium for pacing and ablation. Catheter manipulation requires dexterity and experience, and exposes the interventionalist to ionizing radiation. Through the course of this research, a platform was developed to assist and enhance the navigation of the catheter inside the cardiac chambers. This robotic platform replaces the interventionalist's hand in catheter manipulation and provides the option to force the catheter tip in arbitrary directions using a 3D input device or to automatically navigate the catheter to desired positions within a cardiac chamber by commanding the software to do so. To accomplish catheter navigation, the catheter was modeled as a continuum manipulator, and utilizing robot kinematics, catheter tip position control was designed and implemented. An electromagnetic tracking system was utilized to measure the position and orientation of two key points in catheter model, for position feedback to the control system. A software platform was developed to implement the navigation and control strategies and to interface with the robot, the 3D input device and the tracking system. The catheter modeling was validated through in-vitro experiments with a static phantom, and in-vivo experiments on three live swines. The feasibility of automatic navigation was also veri ed by navigating to three landmarks in the beating heart of swine subjects, and comparing their performance with that of an experienced interventionalist using quasi biplane fluoroscopy. The platform realizes automatic, assisted, and motorized navigation under the interventionalist's control, thus reducing the dependence of successful navigation on the dexterity and manipulation skills of the interventionalist, and providing a means to reduce the exposure to X-ray radiation. Upon further development, the platform could be adopted for human deployment.
6

A Platform for Robot-Assisted Intracardiac Catheter Navigation

Ganji, Yusof January 2009 (has links)
Steerable catheters are routinely deployed in the treatment of cardiac arrhythmias. During invasive electrophysiology studies, the catheter handle is manipulated by an interventionalist to guide the catheter's distal section toward endocardium for pacing and ablation. Catheter manipulation requires dexterity and experience, and exposes the interventionalist to ionizing radiation. Through the course of this research, a platform was developed to assist and enhance the navigation of the catheter inside the cardiac chambers. This robotic platform replaces the interventionalist's hand in catheter manipulation and provides the option to force the catheter tip in arbitrary directions using a 3D input device or to automatically navigate the catheter to desired positions within a cardiac chamber by commanding the software to do so. To accomplish catheter navigation, the catheter was modeled as a continuum manipulator, and utilizing robot kinematics, catheter tip position control was designed and implemented. An electromagnetic tracking system was utilized to measure the position and orientation of two key points in catheter model, for position feedback to the control system. A software platform was developed to implement the navigation and control strategies and to interface with the robot, the 3D input device and the tracking system. The catheter modeling was validated through in-vitro experiments with a static phantom, and in-vivo experiments on three live swines. The feasibility of automatic navigation was also veri ed by navigating to three landmarks in the beating heart of swine subjects, and comparing their performance with that of an experienced interventionalist using quasi biplane fluoroscopy. The platform realizes automatic, assisted, and motorized navigation under the interventionalist's control, thus reducing the dependence of successful navigation on the dexterity and manipulation skills of the interventionalist, and providing a means to reduce the exposure to X-ray radiation. Upon further development, the platform could be adopted for human deployment.
7

Factors supporting and constraining the implementation of robot-assisted surgery: a realist interview study

Randell, Rebecca, Honey, S., Alvarado, Natasha, Greenhalgh, J., Hindmarsh, J., Pearman, A., Jayne, D., Gardner, Peter, Gill, A., Kotze, A., Dowding, D. 04 March 2020 (has links)
Yes / To capture stakeholders’ theories concerning how and in what contexts robot-assisted surgery becomes integrated into routine practice. A literature review provided tentative theories that were revised through a realist interview study. Literature-based theories were presented to the interviewees, who were asked to describe to what extent and in what ways those theories reflected their experience. Analysis focused on identifying mechanisms through which robot-assisted surgery becomes integrated into practice and contexts in which those mechanisms are triggered. Nine hospitals in England where robot-assisted surgery is used for colorectal operations. Forty-four theatre staff with experience of robot-assisted colorectal surgery, including surgeons, surgical trainees, theatre nurses, operating department practitioners and anaesthetists. Interviewees emphasised the importance of support from hospital management, team leaders and surgical colleagues. Training together as a team was seen as beneficial, increasing trust in each other’s knowledge and supporting team bonding, in turn leading to improved teamwork. When first introducing robot-assisted surgery, it is beneficial to have a handpicked dedicated robotic team who are able to quickly gain experience and confidence. A suitably sized operating theatre can reduce operation duration and the risk of de-sterilisation. Motivation among team members to persist with robot-assisted surgery can be achieved without involvement in the initial decision to purchase a robot, but training that enables team members to feel confident as they take on the new tasks is essential. We captured accounts of how robot-assisted surgery has been introduced into a range of hospitals. Using a realist approach, we were also able to capture perceptions of the factors that support and constrain the integration of robot-assisted surgery into routine practice. We have translated these into recommendations that can inform future implementations of robot-assisted surgery.
8

A realist process evaluation of robot-assisted surgery: integration into routine practice and impacts on communication, collaboration and decision-making

Randell, Rebecca, Honey, S., Hindmarsh, J., Alvarado, Natasha, Greenhalgh, J., Pearman, A., Long, A., Cope, A., Gill, A., Gardner, Peter, Kotze, A., Wilkinson, D., Jayne, D., Croft, J., Dowding, D. 04 March 2020 (has links)
Yes / The implementation of robot-assisted surgery (RAS) can be challenging, with reports of surgical robots being underused. This raises questions about differences compared with open and laparoscopic surgery and how best to integrate RAS into practice. Objectives: To (1) contribute to reporting of the ROLARR (RObotic versus LAparoscopic Resection for Rectal cancer) trial, by investigating how variations in the implementation of RAS and the context impact outcomes; (2) produce guidance on factors likely to facilitate successful implementation; (3) produce guidance on how to ensure effective teamwork; and (4) provide data to inform the development of tools for RAS. Design: Realist process evaluation alongside ROLARR. Phase 1 – a literature review identified theories concerning how RAS becomes embedded into practice and impacts on teamwork and decision-making. These were refined through interviews across nine NHS trusts with theatre teams. Phase 2 – a multisite case study was conducted across four trusts to test the theories. Data were collected using observation, video recording, interviews and questionnaires. Phase 3 – interviews were conducted in other surgical disciplines to assess the generalisability of the findings. Findings: The introduction of RAS is surgeon led but dependent on support at multiple levels. There is significant variation in the training provided to theatre teams. Contextual factors supporting the integration of RAS include the provision of whole-team training, the presence of handpicked dedicated teams and the availability of suitably sized operating theatres. RAS introduces challenges for teamwork that can impact operation duration, but, over time, teams develop strategies to overcome these challenges. Working with an experienced assistant supports teamwork, but experience of the procedure is insufficient for competence in RAS and experienced scrub practitioners are important in supporting inexperienced assistants. RAS can result in reduced distraction and increased concentration for the surgeon when he or she is supported by an experienced assistant or scrub practitioner. Conclusions: Our research suggests a need to pay greater attention to the training and skill mix of the team. To support effective teamwork, our research suggests that it is beneficial for surgeons to (1) encourage the team to communicate actions and concerns; (2) alert the attention of the assistant before issuing a request; and (3) acknowledge the scrub practitioner’s role in supporting inexperienced assistants. It is beneficial for the team to provide oral responses to the surgeon’s requests. Limitations: This study started after the trial, limiting impact on analysis of the trial. The small number of operations observed may mean that less frequent impacts of RAS were missed. Future work: Future research should include (1) exploring the transferability of guidance for effective teamwork to other surgical domains in which technology leads to the physical or perceptual separation of surgeon and team; (2) exploring the benefits and challenges of including realist methods in feasibility and pilot studies; (3) assessing the feasibility of using routine data to understand the impact of RAS on rare end points associated with patient safety; (4) developing and evaluating methods for whole-team training; and (5) evaluating the impact of different physical configurations of the robotic console and team members on teamwork. / National Inst for Health Research (NIHR)
9

Facilitating play between children with autism and an autonomous robot

Francois, Dorothee C. M. January 2009 (has links)
This thesis is part of the Aurora project, an ongoing long-term project investigating the potential use of robots to help children with autism overcome some of their impairments in social interaction, communication and imagination. Autism is a spectrum disorder and children with autism have different abilities and needs. Related research has shown that robots can play the role of a mediator for social interaction in the context of autism. Robots can enable simple interactions, by initially providing a relatively predictable environment for play. Progressively, the complexity of the interaction can be increased. The purpose of this thesis is to facilitate play between children with autism and an autonomous robot. Children with autism have a potential for play but often encounter obstacles to actualize this potential. Through play, children can develop multidisciplinary skills, involving social interaction, communication and imagination. Besides, play is a medium for self-expression. The purpose here is to enable children with autism to experience a large range of play situations, ranging from dyadic play with progressively better balanced interaction styles, to situations of triadic play with both the robot and the experimenter. These triadic play situations could also involve symbolic or pretend play. This PhD work produced the following results: • A new methodological approach of how to design, conduct and analyse robotassisted play was developed and evaluated. This approach draws inspiration from non-directive play therapy where the child is the main leader for play and the experimenter participates in the play sessions. I introduced a regulation process which enables the experimenter to intervene under precise conditions in order to: i) prevent the child from entering or staying in repetitive behaviours, ii) provide bootstrapping that helps the child reach a situation of play she is about to enter and iii) ask the child questions dealing with affect or reasoning about the robot. This method has been tested in a long-term study with six children with autism. Video recordings of the play sessions were analysed in detail according to three dimensions, namely Play, Reasoning and Affect. Results have shown the ability of this approach to meet each child’s specific needs and abilities. Future work may develop this work towards a novel approach in autism therapy. • A novel and generic computational method for the automatic recognition of human-robot interaction styles (specifically gentleness and frequency of touch interaction) in real time was developed and tested experimentally. This method, the Cascaded Information Bottleneck Method, is based on an information theoretic approach. It relies on the principle that the relevant information can be progressively extracted from a time series with a cascade of successive bottlenecks sharing the same cardinality of bottleneck states but trained successively. This method has been tested with data that had been generated with a physical robot a) during human-robot interactions in laboratory conditions and b) during child-robot interactions in school. The method shows a sound recognition of both short-term and mid-term time scale events. The recognition process only involves a very short delay. The Cascaded Information Bottleneck is a generic method that can potentially be applied to various applications of socially interactive robots. • A proof-of-concept system of an adaptive robot was demonstrated that is responsive to different styles of interaction in human-robot interaction. Its impact was evaluated in a short-term study with seven children with autism. The recognition process relies on the Cascaded Information Bottleneck Method. The robot rewards well-balanced interaction styles. The study shows the potential of the adaptive robot i) to encourage children to engage more in the interaction and ii) to positively influence the children’s play styles towards better balanced interaction styles. It is hoped that this work is a step forward towards socially adaptive robots as well as robot-assisted play for children with autism.
10

Facilitating collaboration among children with autism through robot-assisted play

Wainer, Joshua January 2013 (has links)
This thesis discusses how autonomous robots can be used to foster and support collaborative play among children with autism in a number of different settings. Because autism impairs one’s skills in social communication and social interaction, this makes it particularly difficult for children with this disorder to participate in many different forms of social play, particularly collaborative play due to the interpersonal skills needed to coordinate and synchronize people’s actions through constantly communicating with them. Since these children have trouble playing collaboratively, this further hinders their ability to develop the necessary skills of interacting and communicating with others. I approached this idea from an empirical, behaviourist perspective instead of a theoretical one, in the sense that I conducted three different experiments in which I observed the behaviours of children with autism participating in controlled play sessions both with and without robots. To this end, I designed simple, effective control architectures which allowed LEGO NXT robots and KASPAR the humanoid robot to autonomously interact with people while playing with them. Additionally, I designed many collaborative video games such as arena games, “Tilt & roll”, and “Copycat”, that served as environments in which children with autism could play with the autonomous robots. The experiments in this thesis attempted to show that not only would children with autism improve their social behaviours while playing collaborative video games with autonomous robots, but these improvements would also transfer into similar settings in which the children would only interact with other people. By recording videos of the children’s interactions and performing observational analyses on the children’s behaviours, the data from my first exploratory experiment indi- cated that the amount of enjoyment the children showed in an after-school robotics was more positively correlated with their social behaviour than the number of play sessions in which they interacted. Using similar means, the results from my more streamlined second experiment suggested that children with autism displayed more social behaviours while playing with a typically developed adult after playing with KASPAR than they did beforehand, and the findings from my more rigorous third experiment strongly indicated that different pairs of children with autism showed improved social behaviours in playing with each other after they all played as groups with KASPAR compared to before they did so.

Page generated in 0.0385 seconds