Spelling suggestions: "subject:"robotics.""
121 |
Moderní technologie využívané ve fyzioterapii u dětí s dětskou mozkovou obrnou / Modern technologies used in physiotherapy at children with cerebral palsyHoskovcová, Tereza January 2021 (has links)
Title: Modern technologies used in physiotherapy at children with cerebral palsy Objectives: The goal of this diploma thesis is evaluate the effect of robotic and virtual therapy on motor functions of lower limbs at children with cerebral palsy. Furthermore, the work is focused on summarizing current knowledge about cerebral palsy, robotic and virtual technologies. Methods: The diploma thesis is processed as a literature review from available literary resources. First part of thesis contains all theoretical bases and knowledge's about cerebral palsy, robotic and virtual technologies use in physiotherapy lower limbs at children with this diagnosis. Second part has a descriptive - analytical character and contains analysis of studies, which was used treatment with robotic and virtual technologies. The thesis is concluded with a discussion, which focused mainly on three basic research questions of the diploma thesis. Results: A total of 8 randomized controlled trials that met the criteria for inclusion in this thesis were described. When making recommendations for using robotics and virtual technologies, is necessary to take into account the type of cerebral palsy, the degree of disability according to GMFCS, age, motor deficit and individual abilities and goals of the therapy. Studies show that the...
|
122 |
Design and Structural Analysis of a Robotic ArmEranki, Venkata Krishna Prashanth, Reddy Gurudu, Rishank January 2017 (has links)
Automation is creating revolution in the present industrial sector, as it reduces manpower and time of production. Our project mainly deals around the shearing operation, were the sheet is picked manually and placed on the belt for shearing which involves risk factor. Our challenge is designing of pick and place operator to carry the sheet from the stack and place it in the shearing machine for the feeding. We have gone through different research papers, articles and had observed the advanced technologies used in other industries for the similar operation. After related study we have achieved the design of a 3-jointed robotic arm were the base is fixed and the remaining joints move in vertical and horizontal directions. The end effector is also designed such that to lift the sheet we use suction cups were the sheet is uplifted with a certain pressure. Here we used Creo-Parametric for design and Autodesk-Inventor 2017 to simulate the designed model.
|
123 |
The Modeling and Simulation of EV3 Motor DynamicsNorouzi Kandalan, Roya 08 1900 (has links)
This paper describes a procedure to find the transfer function for the Lego Mindstorms Ev3. Lego Mindstorms Ev3 can serve as the platform for a system modeling and a controller design course. It is economical and accessible. It is also very compatible with Matlab and Simulink. This platform can be used for concepts of modeling, feedback, and controller design. The main approach in this work focuses on the closed loop instead of open loop. Although this approach turns the problem into a more complicated puzzle, it reveals more details. In this work, different techniques have been used, such as time domain, root locus, and least square estimation. Different tools have also been utilized such as Matlab SISO tool, the Matlab System Identification tool, and Simulink. These methods and implementations assisted to acquire different types of transfer functions for the system. By simulating the transfer functions and comparing them with experimental studies, the matching scores were calculated to decide on the best transfer function. Finding the finest transfer function for this gadget enables us to prepare diverse practical undergraduate and graduate curricula.
|
124 |
Řízení mobilního robota / Mobile robot controlFraněk, Dominik January 2011 (has links)
The goal of this work is design and realization of an autonomous mobile robot, capable of navigation and map creation, using stereoscopic camera and robotic operation system ROS. ** This is an added text for reaching minimal length needed for uploading into information system. **
|
125 |
Aperfeiçoamento de uma arquitetura para robótica social / Improvement of an architecture for social roboticsSilva, Renato Ramos da 07 February 2013 (has links)
Um aspecto importante da interação humana é a atenção compartilhada. Ela é um processo de comunicação onde uma pessoa redireciona a sua atenção para um objeto ou evento e a outra pessoa ou pessoas seguem o seu olhar para o mesmo lugar. O processo é finalizado com a pessoa que segue a atenção realizando um apontamento sobre o objeto e um comentário sobre a situação. Esta habilidade importante é aprendida por nós durante o período da infância e hoje, alguns pesquisadores em robótica estão tentando desenvolver arquiteturas robóticas para aprender essa habilidade em robôs. Deste modo, o laboratório de aprendizado de robôs está trabalhando em uma arquitetura robótica para esse fim. Ela é composta por três módulos, percepção de estímulo, controle de consequência e emissão de resposta. Esta arquitetura robótica foi avaliada no controle de uma cabeça robótica e foi capaz de aprender a seguir o olhar e identificar alguns objetos. No entanto, todos esses módulos têm algumas limitações. A fim de ter uma melhor interação entre um robô e um humano e reduzir os efeitos das limitações, algumas melhorias foram desenvolvidas. Entre elas incluem um novo algoritmo de classificação das posições da cabeça através do histograma de gradiente orientado, inserir novas funcionalidades (definidas como reflexos) ao módulo de controle de consequência e novos algoritmos de aprendizado para selecionar a melhor ação. Todas as modificações realizadas reduziram as limitações e pode melhorar as interações entre um robô e um ser humano / One important aspect of human interaction is the shared attention. It is a communication process where one person redirect his or her attention to an object or event and the other person or people follow gaze to the same place. This process end with a pointing and a comment about the situation by the person that follows the attention. This important ability was learned by us during the childhood and some roboticist are trying to develop robotics architectures to learn this ability in robots. In this way, the Learning Lab Robotics has been working on a robotic architecture used with this proposed. It is composed by three modules, stimulus perception, consequence control and response emission. This robotic architecture was evaluated to control a robotic head and it was capable to learn to follow gaze and identify some objects. However, all of these modules have some limitations. In order to take a better interaction between a robot and a human and reduce the effects of limitations, some improvements were developed. They include a new head pose classification algorithm using histogram of oriented gradient, increase the capability of consequence control with new reflexes and new learning algorithms to select the best action. All modification reduce the limitations and it can improve the interactions between a robot and a human being
|
126 |
Utmaningar och möjligheter vid införande av Robotic Process Automation för verksamheter / Challenges and possibilities when implementing Robotic Process Automation in organisationsLundahl, Oskar January 2018 (has links)
Automatisering av arbetsprocesser har varit ett aktuellt tema för många verksamheter i många år. Ofta är dessa automatiseringar relaterade till fysisk automation som exempelvis robotar vid produktionslinjer. Men med dagens teknik finns det potential för att automatisera arbetsprocesser i verksamheters back-office processer. Robotic process automation, eller förkortat som RPA, är en teknik som har förmågan att imitera användarens steg i en arbetsprocess och återskapa arbetsprocessen utan den mänskliga resursen. Denna studie har som syfte att fastställa utmaningar och möjligheter som är relaterade vid införande av RPA i verksamheter. Genom intervjuer och tidigare publicerat material om RPA, skall denna studie erbjuda en djupare förståelse kring utmaningar och möjligheter för den stigande trenden robotic process automation. / Automation has been a hot topic for many businesses for a number of years now. The term is usually related to automation of physical machinery like robots to speed up production and assembling of cars. But with currently technology, the automation has taken a step further. Automation is now capable of automating back-office processes. Robotic Process Automation, also known as RPA, is a technology that is capable of imitating the users step in a business process and replicate it automatically, without human intervention. The purpose of this study is to determine the challenges and opportunities related to the implementation of RPA in businesses. By performing interviews and examining existing material about RPA, this study aims to deliver a deeper and wider understanding of the rising technology that is Robotic Process Automation.
|
127 |
Building Better Exoskeletons: Understanding How Design Affects Robot Assisted Gait TrainingStegall, Paul January 2016 (has links)
Physical therapy is a field with ever increasing demands as the population ages, resulting in a larger number of individuals living with impairments. Therapy is both physically intensive and time intensive for physical therapists, and can require more than one therapist per patient. The use of technology can reduce both these physical and time demands if appropriately applied, while improving repeatability and providing quantitative evaluation of performance. Through these abilities, it may also improve the quality of life for patients. The work presented here explores how the mechanical and controller design of exoskeletons can be used to improve adaptations to new gait patterns in healthy individuals. Armed with this knowledge, new treatment methods can be adapted, applied, and validated for impaired populations with the intention of recovering a more natural gait pattern.
First, the ALEX II device is presented. It is a unilateral device, designed to aid in gait training for stroke survivors. The previous version, ALEX I, had several limitations in terms of pelvic freedom, leg range of motion, and the support of the gravitational load. ALEX II was designed to address these issues. Next, a study is presented, using healthy young adults (N=30), in which ALEX II was used to explore how the amount of freedom allowed at the pelvis during gait training affects the level of adaptation subjects are able to achieve. This was evaluated for five separate configurations which resemble existing exoskeletons. It was found that intermediate levels of pelvic freedom degrade the amount of adaptation and that pelvic translation contributes more to this effect than hip abduction/adduction.
The next work concerns the design of ALEX III, a bilateral device with twelve active degrees-of-freedom. ALEX III was created to increase the ability to explore the functionality required for gait training, which is why it is capable of controlling 4 degrees-of-freedom at each leg, and 4 degrees-of-freedom at the pelvis. This is followed by the the design of a new type of haptic feedback which utilizes a variable, viscous damping field, which increases the damping coeffiecent as the subject moves away from a specified path. This feedback type was tested in a set of experiments in healthy young adults. The first study (N=32) compared four different settings for the new feedback, finding that while all groups demonstrated adaptations in gait, the lowest rate of change of the damping field exhibited less adaptation. The final study (N=36) compared this haptic feedback to two previously used haptic feedback types. The previously used feedback strategies used a force that pushed the leg either towards or away from the desired path. All three of these strategies were found to produce similar levels of adaptation, however the damping field used much less external force. These findings may change the way exoskeletons for gait training are designed and increase their accessibility.
While all the findings need to be validated in impaired populations they can still inform the design of future exoskeletons. The first finding, that providing an intermediate amount of freedom to the pelvis can interfere with gait training, suggests that future devices should have very high amounts of freedom or very restricted pelvic motions. The final finding, that damping fields can be used to induce gait adaptations using a much lower force, can drastically change exoskeleton design and how robotic therapy is provided. Exoskeletons can be made lighter as a result of the force being highly reduced so that lighter weight components can be used, and the dissipative nature of the force reduces dependence on heavy power sources because regenerative breaking can be used to power the device. These factors also make it possible to for devices to be used overground, which may make training more transferable to the real world.
|
128 |
A Novel Design of a Cable-driven Active Leg Exoskeleton (C-ALEX) and Gait Training with Human SubjectsJin, Xin January 2018 (has links)
Exoskeletons for gait training commonly use a rigid-linked "skeleton" which makes them heavy and bulky. Cable-driven exoskeletons eliminate the rigid-linked skeleton structure, therefore creating a lighter and more transparent design. Current cable-driven leg exoskeletons are limited to gait assistance use. This thesis presented the Cable-driven Active Leg Exoskeleton (C-ALEX) designed for gait retraining and rehabilitation. Benefited from the cable-driven design, C-ALEX has minimal weight and inertia (4.7 kg) and allows all the degrees-of-freedom (DoF) of the leg of the user. C-ALEX uses an assist-as-needed (AAN) controller to train the user to walk in a new gait pattern.
A preliminary design of C-ALEX was first presented, and an experiment was done with this preliminary design to study the effectiveness of the AAN controller. The result on six healthy subjects showed that the subjects were able to follow a new gait pattern significantly more accurately with the help of the AAN controller. After this experiment, C-ALEX was redesigned to improve its functionality. The improved design of C-ALEX is lighter, has more DoFs and larger range-of-motion. The controller of the improved design improved the continuity of the generated cable tensions and added the function to estimate the phase of the gait of the user in real-time.
With the improved design of C-ALEX, an experiment was performed to study the effect of the weight and inertia of an exoskeleton on the gait of the user. C-ALEX was used to simulate exoskeletons with different levels of weight and inertia by adding extra mass and change the weight compensation level. The result on ten subjects showed that adding extra mass increased step length and reduced knee flexion. Compensating the weight of the mass partially restored the knee flexion but not the step length, implying that the inertia of the mass is responsible for the change. This study showed the distinctive effect of weight and inertia on gait and demonstrated the benefit of a lightweight exoskeleton.
C-ALEX was designed for gait training and rehabilitation, and its training effectiveness was studied in nine healthy subjects and a stroke patient. The healthy subjects trained with C-ALEX to walk in a new gait pattern with 30% increase in step height for 40 min. After the training, the subjects were able to closely repeat the trained gait pattern without C-ALEX, and the step height of the subjects increased significantly. A stroke patient also tested C-ALEX for 40 minutes and showed short-term improvements in step length, step height, and knee flexion after training. The result showed the effectiveness of C-ALEX in gait training and its potential to be used in stroke rehabilitation.
|
129 |
Sistema autônomo de inspeção de dutosGeremia, Giovani January 2012 (has links)
A principal forma de transporte de petróleo e derivados, entre outras substâncias, são os dutos, e um dos processos críticos relacionados é a sua inspeção periódica, que é necessária e obrigatória, de alto custo devido à sua complexidade, e que na maioria das vezes são realizadas manualmente, em procedimentos demorados, pouco confiáveis e insalubres devido ao meio e aos riscos a que o trabalhador é exposto. Este trabalho tem o objetivo de testar diversas aplicações e situações de um sistema de inspeção de dutos robótico desenvolvido. O interesse de observação foi a praticidade e facilidade de montagem e desmontagem do equipamento sobre a tubulação, a agilidade dos graus de liberdade propostos para o sistema, a flexibilidade do equipamento para utilização de diferentes métodos de inspeção, a rapidez e confiabilidade dos resultados de inspeção por ultrassom para varredura de espessuras em busca de corrosão generalizada interna de uma tubulação e a capacidade de precisão e resolução desta inspeção por ultrassom. Para abordar estes pontos, foram realizados uma série de testes, inicialmente para verificação do bom funcionamento dos graus de liberdade do sistema, e posteriormente com métodos diferenciados de inspeção, como testes para medição geométrica externa de uma tubulação, testes com sistemas de ultrassom embarcado em laboratório e em campo com diferentes malhas de inspeção e com um ou múltiplos cabeçotes, e para diferentes tubulações e formatos de redução de espessuras de parede na tubulação. / The main way for transporting petroleum and substances alike is through ducts, and one of the most critic processes involved is the periodic inspection, wich is necessary and mandatory, with a high cost due to its complexity, and, in most cases, done manually in long time consuming procedures and with little reliability and high risk for the workers involved. This work is intended to test various situations of a robotic inspection system developed. The observation interest was the practicity and easiness of assembling and disassembling the equipment on the pipes, the agility of degrees of freedom proposed for the system, the flexibility of the equipment for the use in different methods of inspection, the quickness and reliability of the results by ultrasound for scanning different thicknesses of a duct in search of "generalized internal corrosion" and the level of precision and resolution of this ultrasound scan. To approach this topics, a series of test were conducted, at first to check if the degrees of freedom of the system were working as intended and afterwards with different methods of inspection, such as external geometric measurements of the pipes, tests with onboard ultrasound systems in lab and on the field with different inspection grades and with one or multiple ultrasound sensors, and for different kinds of pipes and thickness reduction shapes of the pipe's walls.
|
130 |
Upper limb proprioceptive sensitivity in three-dimensional space: effects of direction, posture, and exogenous neuromodulationJanuary 2018 (has links)
abstract: Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane however, few studies have looked at proprioceptive sensitivity in 3d space. In addition, the extent to which proprioceptive sensitivity is modifiable by factors such as exogenous neuromodulation is unclear. To investigate proprioceptive sensitivity in 3d we developed a novel experimental paradigm employing a 7-DoF robot arm, which enables reliable testing of arm proprioception along arbitrary paths in 3d space, including vertical motion which has previously been neglected. A participant’s right arm was coupled to a trough held by the robot that stabilized the wrist and forearm, allowing for changes in configuration only at the elbow and shoulder. Sensitivity to imposed displacements of the endpoint of the arm were evaluated using a “same/different” task, where participant’s hands were moved 1-4 cm from a previously visited reference position. A measure of sensitivity (d’) was compared across 6 movement directions and between 2 postures. For all directions, sensitivity increased monotonically as the distance from the reference location increased. Sensitivity was also shown to be anisotropic (directionally dependent) which has implications for our understanding of the planning and control of reaching movements in 3d space.
The effect of neuromodulation on proprioceptive sensitivity was assessed using transcutaneous electrical nerve stimulation (TENS), which has been shown to have beneficial effects on human cognitive and sensorimotor performance in other contexts. In this pilot study the effects of two frequencies (30hz and 300hz) and three electrode configurations were examined. No effect of electrode configuration was found, however sensitivity with 30hz stimulation was significantly lower than with 300hz stimulation (which was similar to sensitivity without stimulation). Although TENS was shown to modulate proprioceptive sensitivity, additional experiments are required to determine if TENS can produce enhancement rather than depression of sensitivity which would have positive implications for rehabilitation of proprioceptive deficits arising from stroke and other disorders. / Dissertation/Thesis / Doctoral Dissertation Neuroscience 2018
|
Page generated in 0.0562 seconds