• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robot path planning in dynamic environments using a simulated annealing based approach

Miao, Hui January 2009 (has links)
Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.
2

A computational framework for manipulator motion planning

Qin, Caigong January 1996 (has links)
No description available.
3

A reduced visibility graph approach for motion planning of autonomously guided vehicles

Diamantopoulos, Anastasios January 2001 (has links)
This thesis is concerned with the robots' motion planning problem. In particular it is focused on the path planning and motion planning for Autonomously Guided Vehicles (AGVs) in well-structured, two-dimensional static and dynamic environments. Two algorithms are proposed for solving the aforementioned problems. The first algorithm establishes the shortest collision-semi-free path for an AGV from its start point to its goal point, in a two-dimensional static environment populated by simple polygonal obstacles. This algorithm constructs and searches a reduced visibility graph, within the AGV's configuration space, using heuristic information about the problem domain. The second algorithm establishes the time minimal collision-semi-free motion for an AGV, from its start point to is goal point, in a two-dimensional dynamic environment populated by simple polygonal obstacles. This algorithm considers the AGV's spacetime configuration space, thus reducing the dynamic motion planning problem to the static path planning problem. A reduced visibility graph is then constructed and searched using information about the problem domain, in the AGV's space-time configuration space in order to establish the time-minimal motion between the AGV's start and goal configurations. The latter algorithm is extended to solve more complicated instances of the dynamic motion planning problem, where the AGV's environment is populated by obstacles, which change their size as well as their position over time and obstacles, which have piecewise linear motion. The proposed algorithms can be used to efficiently and safely navigate AGVs in well structured environments. For example, for the navigation of an AGV, in industrial environments, where it operates as part of the manufacturing process or in chemical and nuclear plants, where the hostile environment is inaccessible to humans. The main contributions in this thesis are, the systematic study of the V*GRAPH algorithm and identification of its methodic and algorithmic deficiencies; recommendation of corrections and further improvements on the V* GRAPH algorithm, which in turn lead to the proposition of the V*MECHA algorithm for robot path planning; proposition of the D*MECHA algorithm for motion planning in dynamic environments; extension to the D*MECHA algorithm to solve more complicated instances of the dynamic robot motion planning problem; discussion of formal proofs of the proposed algorithms' correctness and optimality and critical comparisons with existing similar algorithms for solving the motion planning problem.

Page generated in 0.0786 seconds