• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parameterized Least-Squares Attitude History Estimation and Magnetic Field Observations of the Auroral Spatial Structures Probe

Martineau, Ryan J. 01 May 2015 (has links)
Terrestrial auroras are visible-light events caused by charged particles trapped by the Earth's magnetic eld precipitating into the atmosphere along magnetic eld lines near the poles. Auroral events are very dynamic, changing rapidly in time and across large spatial scales. Better knowledge of the low of energy during an aurora will improve understanding of the heating processes in the atmosphere during geomagnetic and solar storms. The Auroral Spatial Structures Probe is a sounding rocket campaign to observe the middle-atmosphere plasma and electromagnetic environment during an auroral event with multipoint simultaneous measurements for fine temporal and spatial resolution. The auroral event in question occurred on January 28, 2015, with liftoff the rocket at 10:41:01 UTC. The goal of this thesis is to produce clear observations of the magnetic eld that may be used to model the current systems of the auroral event. To achieve this, the attitude of ASSP's 7 independent payloads must be estimated, and a new attitude determination method is attempted. The new solution uses nonlinear least-squares parameter estimation with a rigid-body dynamics simulation to determine attitude with an estimated accuracy of a few degrees. Observed magnetic eld perturbations found using the new attitude solution are presented, where structures of the perturbations are consistent with previous observations and electromagnetic theory.
2

Investigating the Impact of Water Injection on Noise Generation During Rocket Lift-Off

Linus, Sångberg January 2021 (has links)
This thesis aim to provide SSC, Swedish Space Corporation, with a foundation for understanding the key ideas behind water injection during rocket lift-off, including problems to be avoided when simulating the phenomena. This investigation focus on finding approaches suitable for obtaining a rough estimate of the reduction in noise generation, when too expensive equipment required is absent. The main idea was to compare different methods at the end as an alternative suitable way of verifying, since validation data was not available. The setup of the simulations consisted of two cases, one with water injection and the second case was without, and they were simulated the OpenFOAM software while the mesh was constructed using the GMSH software. A 1D analytical prediction model was computed using Matlab to estimate the noise generated. The result of the simulation showed an error of approximately 300-400 m/s within the rocket engine when compared to the Rocket Propulsion Analysis (RPA) software result. The maximum sound pressure level without water injection (SPL) from the analytical prediction model, ended up at approximately 172dB as well as 164dB depending on where it was "recorded". The maximum SPL with water injection was approximately 7dB lower in both recorded locations which was achieved by using optimal initial values. The biggest error observed by researches using this prediction model is approximately +2 dB above the real value. However, the error from this specific setup could not be estimated. The challenges and approximations encountered throughout this investigation is thoroughly discussed within the thesis and despite the absence of accurate results this investigation provides a thorough insight into water injection during rocket lift-off, with the potential of achieving better results using a more advanced solver in OpenFOAM.

Page generated in 0.1432 seconds