• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 11
  • 11
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Activation of mTORC1 Improves Cone Cell Metabolism and Extends Vision in Retinitis Pigmentosa Mice: A Dissertation

Venkatesh, Aditya 12 April 2016 (has links)
Retinitis Pigmentosa (RP) is an inherited photoreceptor degenerative disease that leads to blindness and affects about 1 in 4000 people worldwide. The disease is predominantly caused by mutations in genes expressed exclusively in the night active rod photoreceptors; however, blindness results from the secondary loss of the day active cone photoreceptors, the mechanism of which remains elusive. Here, we show that the mammalian target of rapamycin complex 1 (mTORC1) is required to delay the progression of cone death during disease and that constitutive activation of mTORC1 is sufficient to maintain cone function and promote cone survival in RP. Activation of mTORC1 increased expression of genes that promote glucose uptake, retention and utilization, leading to increased NADPH levels; a key metabolite for cones. This protective effect was conserved in two mouse models of RP, indicating that the secondary loss of cones can be delayed by an approach that is independent of the primary mutation in rods. However, since mTORC1 is a negative regulator of autophagy, its constitutive activation led to an unwarranted secondary effect of shortage of amino acids due to incomplete digestion of autophagic cargo, which reduces the efficiency of cone survival over time. Moderate activation of mTORC1, which promotes expression of glycolytic genes, as well as maintains autophagy, provided more sustained cone survival. Together, our work addresses a long-standing question of non-autonomous cone death in RP and presents a novel, mutation-independent approach to extend vision in a disease that remains incurable.

Page generated in 0.0772 seconds