Spelling suggestions: "subject:"roller rios"" "subject:"roller rig""
1 |
A Test Rig for Emulating Drive Cycles to Measure the Energy Consumption of HEVs / En Testrigg för att Emulera Körcykler vid Mätning av Elhybridbilars EnergiförbrukningBa, Meng January 2019 (has links)
This master thesis project aims to complete and verify core functions of a test rig that is designed and built to emulate drive cycles for measuring the energy consumption of HEVs, especially a vehicle named ELBA from KTH Integrated Transport Research Lab (ITRL). To fulfill this goal, a simplified model is created for the test rig, whose involved parameters are identified through various experiments. Then the model is verified by both step voltage responses and sinusoidal current responses. Meanwhile, vehicle dynamics is modeled to calculate required resistance force for road slope emulation. Moreover, an existing method, vehicle equivalent mass, is utilized to compensate dynamic force of the vehicle body, enabling simulation of regenerative braking without an extra flywheel. Together with test rig’s model that is responsible for converting required resistance force to demanded current reference, the rig’s functions are completed and ready for final verification. As a result, the driver of the DC motor on the rig is found to has lower current limitation than required so that the rig is not able to entirely compensate dynamic force of the car. However, the feasibility of the principle is still proved by the tests. Based on the result, recommendations are given to solve the problem and achieve other improvements in the future. / Detta examensarbete syftar till att slutföra och verifiera kärnfunktioner i en testrigg som är designad och byggd för att emulera körcykler för att mäta energiförbrukningen för elhybridbilar, särskilt ett fordon som heter ELBA från KTH Integrated Transport Research Lab (ITRL). För att uppfylla detta mål skapades en förenklad modell för testriggen, vars parametrar identifieras genom olika experiment. Sedan verifieras modellen av både stegspänningssvar och sinusformade strömsvar. Under tiden modelleras fordonsdynamiken för att beräkna erforderlig motståndskraft för väglöpemulering. Samtidigt modelleras fordonsdynamiken för att beräkna den erforderliga motståndskraften för emulering av väglutningar. Dessutom används en befintlig metod, fordonsekvivalentmassa, för att kompensera fordonskroppens dynamiska kraft, vilket möjliggör simulering av regenerativ bromsning utan extra svänghjul. Tillsammans med testriggens modell som är ansvarig för att konvertera erforderlig motståndskraft till efterfrågad strömreferens, är riggens funktioner färdig och redo för slutlig verifiering. Som ett resultat har föraren av likström motorn på riggen visat sig ha lägre strömbegränsning än vad som krävs så att riggen inte helt kan kompensera bilens dynamiska kraft. Emellertid bevisas principens genomförbarhet fortfarande av testerna. Baserat på resultatet ges rekommendationer för att lösa problemet och uppnå andra förbättringar i framtiden.
|
2 |
Analytical Evaluation of the Accuracy of Roller Rig Data for Studying Creepage in Rail VehiclesKeylin, Alexander 23 January 2013 (has links)
The primary purpose of this research is to investigate the effectiveness of a scaled roller rig for accurately assessing the contact mechanics and dynamics between a profiled steel wheel and rail, as is commonly used in rail vehicles. The established creep models of Kalker and Johnson and Vermeulen are used to establish correction factors, scaling factors, and transformation factors that allow us to relate the results from a scaled rig to those of a tangent track. �Correction factors, which are defined as the ratios of a given quantity (such as creep coefficient) between a roller rig and a track, are derived and used to relate the results between a full-size rig and a full-size track. Scaling factors are derived to relate the same quantities between roller rigs of different scales. Finally, transformation factors are derived by combining scaling factors with correction factors in order to relate the results from a scaled roller rig to a full-size tangent track. Close-end formulae for creep force correction, scaling, and transformation factors are provided in the thesis, along with their full derivation and an explanation of their limitations; these formulae can be used to calculate the correction factors for any wheel-rail geometry and scaling.
For Kalker's theory, it is shown that the correction factor for creep coefficients is strictly a function of wheel and rail geometry, primarily the wheel and roller diameter ratio. For Johnson and Vermeulen's theory, the effects of creepage, scale, and load on the creep force correction factor are demonstrated. �It is shown that INRETS' scaling strategy causes the normalized creep curve to be identical for both a full-size and a scaled roller rig. �It is also shown that the creep force correction factors for Johnson and Vermeulen's model increase linearly with creepage, starting with the values predicted by Kalker's theory. �Therefore, Kalker's theory provides a conservative estimate for creep force correction factors. �A case study is presented to demonstrate the creep curves, as well as the correction and transformation factors, for a typical wheel-rail configuration. �Additionally, two studies by other authors that calculate the correction factor for Kalker's creep coefficients for specific wheel-rail geometries are reviewed and show full agreement with the results that are predicted by the formulae derived in this study. �Based on a review of existing and past roller rigs, as well as the findings of this thesis, a number of recommendations are given for the design of a roller rig for the purpose of assessing the wheel-rail contact mechanics. �A scaling strategy (INRETS') is suggested, and equations for power consumption of a roller rig are derived. Recommendations for sensors and actuators necessary for such a rig are also given. Special attention is given to the resolution and accuracy of velocity sensors, which are required to properly measure and plot the creep curves. / Master of Science
|
Page generated in 0.0584 seconds