• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 12
  • 8
  • 8
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 50
  • 17
  • 17
  • 15
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Influence of crystallographic orientation in normal and sliding contacts

Dawkins, Jeremy James January 2008 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Rick Neu; Committee Member: Itzhak Green; Committee Member: Jeffrey Streator
32

Estudo da integridade superficial e seu efeito na fadiga de contato de um aço ferramenta. / The effect of surface integrity on the contact fatigue resistance of a tool steel.

John Ferney Alvarez Rosário 19 September 2011 (has links)
Os processos de manufatura, bem como os parâmetros de processamento utilizados produzem diferentes resultados com relação à integridade de uma superfície. Estas alterações se refletem em mudança das propriedades da superfície, as quais podem influenciar o desempenho dos componentes. O presente trabalho estuda o efeito da integridade superficial gerada pelos processos de torneamento e retificação na resistência à fadiga de contato do aço ferramenta AISI H13. A influência do processo de usinagem e dos parâmetros de corte no estado da superfície e subsuperfície, e como estas características afetam o desempenho são determinados. Foram geradas quatro condições diferentes para as superfícies torneadas mediante a combinação de parâmetros de corte. As superfícies retificadas foram produzidas empregando as mesmas condições de retificação, com isso, obteve-se a mesma condição para todos os corpos de prova ensaiados. As características medidas da integridade superficial foram: os parâmetros de rugosidade, tensões residuais, microdureza Vickers da seção transversal e ruído magnético de Barkhausen. Foi determinado o desempenho das superfícies por fadiga de contato de rolamento, num equipamento na configuração esfera-plano. Os corpos de prova foram anéis de AISI H13 temperados e revenidos. A totalidade dos ensaios foi realizada até a ocorrência de lascamento (Spalling). Os ensaios foram realizados com lubrificação e com uma máxima pressão de contato de Hertz de 3,6 GPa. Foi observado que dependendo do nível de integridade superficial induzido pelo processo de usinagem e dos parâmetros selecionados, o desempenho da superfície em fadiga de contato de rolamento foi afetado. Contudo, as melhores condições de desempenho foram dos materiais retificados, e para os materiais torneados o melhor desempenho foi obtido com maiores velocidades de corte. / The manufacturing process and the machining parameters selected lead to different integrity of the surface, and these characteristics will influence the functional performance of the components. This study evaluated and analyzed the effect of surface integrity on the contact fatigue resistance of the H13 hot work tool steel. The surfaces were manufactured by hard turning and grinding process. Therefore, the influences of the machining process and the cutting parameters on the surface and on the subsurface layer were studied. Four different turned surfaces were obtained as a combination of cutting parameters selected for the tests. On the other hand, grinding surfaces were generated using the same machining conditions. The characteristics of surface integrity evaluated were: surface roughness parameters, residual stresses, Barkhausen noise, and microhardness of surface and sub-layers in transverse section. It was also evaluated the performance of the samples by rolling contact fatigue tests conducted in a ball on washer machine. The specimens were rings made of AISI H13 steel, which were quenched and tempered. All tests were performed until the occurrence of spalling. The tests were carried out under lubrication and with a maximum Hertz contact pressure of 3.6 GPa. Monitoring and failure detection were carried out by analyzing the changes in the vibration signal of the test machine sensors. It was observed that the performance of the surface in rolling contact fatigue resistance was affected by the level of the surface integrity, related to the machining process and the machining parameters.
33

Estudo sobre a vida útil de rolamentos fixos de uma carreira de esferas. / Study about rolling bearing life of deep groove ball bearings.

Marcos Vilodres Campanha 19 December 2007 (has links)
O presente trabalho destina-se à discussão sobre o cálculo de vida útil de rolamentos. Mostrando o avanço do processo de cálculo ao longo das décadas até o mais alto grau de desenvolvimento atual. A preocupação do texto é demonstrar de forma simples e objetiva as divergências que existem entre a formulação teórica e a real vida dos rolamentos, no que tange a fadiga de contato. Neste contexto foram realizados testes, em máquina especialmente destinada ao ensaio da fadiga de rolamentos. Variando-se para as duas séries de ensaios, apenas, a temperatura (aproximadamente 85°C e 110°C). Os resultados obtidos indicam que a vida real dos rolamentos apresenta grande divergência se comparada com a vida útil calculada, principalmente, no regime com maior temperatura. Atribui-se a esta disparidade, a ausência de cálculos precisos quanto à correlação da vida útil com o fator l, que é uma forma de se calcular o espaçamento entre as superfícies de contato, e o não emprego do cálculo do fator de carga, na formulação da vida útil de rolamentos. / The present work has the purpose of discussing the life of rolling bearings, describing the evolution of bearing life calculation until its current state of the art. Our focus is to demonstrate, simply and objectively, the inconsistencies occurring between the actual life of rolling bearings and their theoretical fatigue life estimation. For such purpose, tests were developed in a special bearing test rig to assess bearing fatigue. Two test sets were carried out with temperature being the only variation (approximately 85°C and 110°C). Results obtained from these tests suggest that the real life of rolling bearings is indeed very different from calculated bearing life, especially under higher temperature. Such disparity can be attributed to the lack of a precise computation of the relationship between bearing real life and the l factor - which determines the thickness of lubricant separating raceways and balls - as well as to the failure to compute the load factor in bearing life estimation.
34

On Heavy-Haul Wheel Damages using Vehicle Dynamics Simulation

Hossein Nia, Saeed January 2017 (has links)
Maintenance cost is one of the important issues in railway heavy-haul operations. In most of the cases, these costs are majorly referring to reprofiling and changing the wheels of the locomotives and the wagons. The main reason of the wheel damages is usually severe wear and/or surface initiated rolling contact fatigue (RCF).This work tries to enhance and improve the knowledge of the wheel wear and RCF prediction models using dynamic simulations. While most of the contents of this study can be generalised to other operational networks, this study is focused on the locomotives and wagons of the Swedish iron-ore company LKAB. The trains are operating on the approximately 500 km long IORE line from Luleå to Narvik in the north of Sweden and Norway respectively.Firstly, a literature survey of dynamic modelling of the wagons with various three-piece bogie types is presented. Then, with concentrating on the standard three-piece bogies, parameter studies are carried out to find out what the most important reasons of wheel damages are. Moreover, the long-term stability of wheel profiles of the IORE wagons is analysed. This is done by visualising the wear and RCF evolution on the wheel profiles over 150,000km of simulated running distance.Most of the calculations for the wagons are repeated for the locomotives. However, traction and braking are also considered in the simulation model and their effects on wheel damages are briefly studied. To improve the accuracy of the wheel damage analysis, a newly developed algorithm called FaStrip is used to solve the tangential contact problem instead of FASTSIM. The damage prediction model developed in the thesis is used to study the effects of increasing axle load, correcting the track gauge, limiting the electro-dynamic braking and using a harder wheel material on the wheel life. Furthermore, a new method is developed to predict the running distance between two consecutive reprofilings due to severe surface initiated fatigue. The method is based on shakedown analysis and laboratory tests.Most of the research works in wear calculation are limited to two approaches known as wear number and Archard methods. The correlation between these two methods is studied. The possibility of using the relation between the two methods for the wear calculation process is investigated mainly to reduce the calculation time for wheel profile optimisation models. / <p>QC 20171219</p>
35

Microstructural degradation of bearing steels

Solano Alvarez, Wilberth January 2015 (has links)
The aim of the work presented in this thesis is to clarify one of the most fundamental aspects of fatigue damage in bearings steels through critical experiments, in particular whether damage in the form of cracks precedes hard “white-etching matter" formation, which is carbon supersaturated nanoscaled ferrite. Heat treatments have been designed to create four different crack types and distributions: scarce martensite plate cracks, fine grain boundary cracks, abundant martensite plate cracks, and surface cracks. Subsequent rolling contact fatigue experiments showed that the amount of hard white-etching matter is higher in pre-cracked samples compared to those without prior damage and that its formation mechanism is the frictional contact of disconnected surfaces within the bulk that elevate the temperature and localise deformation. These key experiments indicate that hard white-etching matter is the consequence, not the cause, of damage. Therefore, one way to avoid white-etching matter is by increasing the toughness of the material. The macroscopically homogenous distribution of microcracks proved also to be a useful rolling contact fatigue life enhancer due to damage deflection via crack branching and a powerful trap for diffusible hydrogen. Successful trapping was corroborated by the inability of hydrogen to cause crack propagation via embrittlement or accelerate white-etching matter generation during rolling contact fatigue. By also studying the behaviour of a nanostructured bainitic steel under rolling contact fatigue, it was found that its degradation mechanism is ductile void formation at bainitic ferrite/stress-induced martensite interfaces, followed by growth and coalescence into larger voids that lead to fracture along the direction of the softer phase as opposed to the conventional damage mechanism in 52100 steel of crack initiation at inclusions and propagation. Given the relevance of phase quantification in nanobainite and the possible surface artefacts introduced by preparation, alternative methods to X-ray diffraction such as magnetic measurements were also investigated. The lack of hard white-etching matter obtained in the carbide-free nanostructured bainite led to conclude that an alternative route to mitigate hard white-etching matter could be by eliminating pre-eutectoid carbides from the microstructure, therefore restricting their dissolution and ultimate carbon supersaturation of the mechanically deformed and homogenised nanoferrite.
36

Mechanisms of microstructural damage during rolling contact fatigue of bearing steels

Kang, JeeHyun January 2014 (has links)
Bearings are employed in a number of applications under extremely demanding conditions. During long operation times, the material undergoes rolling contact fatigue where microstructural damage manifests as dark-etching regions and white-etching areas, which display different properties from the surrounding region. The aim of this study is to identify the mechanisms for such damage and to suggest models that can explain the influence of the initial microstructure and test conditions. In order to appraise the stress state in rolling contacts, two testing techniques were employed and it was examined if the testing methods could reproduce the same damage as in bearing operation. During ball-on-rod fatigue testing, microcracks were generated adjacent to inclusions and some were decorated with white-etching areas. Repetitive push tests showed a similar extent of subsurface hardening compared to the ball-on-rod tests, and allowed the strain per stress cycle to be measured. The microstructural alterations in a white-etching area were studied both on a macroscale and on an atomic-scale. The degree of stress concentration near a microcrack was calculated employing a nite element method. The microstructure, as well as the segregation behaviour of alloying elements in the white-etching area, were investigated by employing transmission electron microscopy and atom probe tomography. A nanocrystalline structure with scattered carbide particles was observed in the white-etching area. Carbon and silicon segregation was highly pronounced in some boundaries of dislocation cell structures. Models were suggested to account for the microstructural alterations during rolling contact fatigue. Carbide coarsening in dark-etching regions was modelled by considering how carbon di usion is assisted by dislocation glide. The predicted hardness evolution was consistent with experimental observation. The kinetics of carbide dissolution in white-etching areas was calculated by taking two processes into account: deformation accumulation and carbon diffusion. These models suggest that the microstructural changes during bearing operation can be controlled by tailoring the initial microstructure and managing the test conditions.
37

Modernizace zkušebních stanic R-mat / Modernization of R-mat test stations

Papaj, Lukáš January 2021 (has links)
The aim of the thesis is to reconstruct obsolete R-mat test stations, which are used for rolling contact fatigue tests of material, which are still of interest from industry. It was necessary to replace the original control electronics with a new industrial computer to allow use modern sensors and automate the entire test process. At the same time, the measurement was supplemented by an acoustic emission method, which can also record the development of damage. Design modifications have been made that allow the installation of all new sensors. The main method for evaluating the tests is vibrodiagnostics, which is supplemented by the acoustic emission method. With the help of several experiments, the shortcomings of the new control system were identified, some parameters were designed, and the main functionality of the modernized R-mat station was verified. According to the proposed parameters and the identified shortcomings, the control system was modified, and a script was created, which is used to evaluate the test. It is still possible to perform rolling contact fatigue tests of the material on the modernized equipment, and thanks to the modernization of the electronics, it is possible to test completely new methods of test evaluation.
38

Rekonstrukce stanice AXMAT / Reconstruction of AXMAT Testing Station

Gergel, Matej January 2014 (has links)
The master´s thesis deals with reconstruction of RCF test rig AXMAT. Main goal is design new hydraulic load system and his realization. The first part of thesis describes similar experimental machines and their pros and cons. This analysis is base for complete reconstruciton of AXMAT. New hydraulic load system allows dynamic programmable load cycles. Control system with close loop and feedback was created in software Matlab – Simulink. Main frame was reconstructed too. Control and action parts were asseble to station. Output of thesis is function sample.
39

Reduction of rolling contact fatigue through the control of the wheel wear shape

Spangenberg, Ulrich January 2017 (has links)
Heavy haul railway operations permit the transport of huge volumes at lower cost than other modes of transport. The low cost can only be sustained if the maintenance costs associated with such railway operations are minimised. The maintenance costs are mainly driven by wheel and rail damage in the form of wear and rolling contact fatigue (RCF). Low wear rates in the wheel-rail interface have resulted in an increase in the prevalence of rail RCF, thereby increasing rail maintenance costs. The aim of this study is to develop an approach to reduce rail RCF on South Africa’s iron ore export line by managing the worn wheel shape. This approach is developed by evaluating wheel and rail profile shapes that contribute the most to RCF initiation, studying the influence of suspension stiffness and rail profile changes as well as a redesign of the wheel profile. The influence of wheel and rail profile shape features on the initiation of rolling contact fatigue (RCF) cracks was evaluated based on the results of multibody vehicle dynamics simulations. The damage index and surface fatigue index were used as two damage parameters to assess the influence of the different features. The damage parameters showed good agreement to one another and to in-field observations. The wheel and rail profile shape features showed a correlation to the predicted RCF damage. The RCF damage proved to be most sensitive to the position of hollow wear and thus bogie tracking. RCF initiation and crack growth can be reduced by eliminating unwanted shape features through maintenance and design and by improving bogie tracking. Two potential mitigation measures had been adapted from those published in literature to reduce RCF. The mitigation measures involved changes in suspension stiffness to spread wheel wear across the tread and the use of gauge corner relief rail profiles. These mitigation measures were evaluated by means of multibody dynamics and wear maintenance costs. These mitigation measures, however, did not prove to be successful in reducing RCF initiation while maintaining a low wheel wear rate. The current operating conditions on South Africa’s iron ore line, although still not optimal overall, were found to be better in terms of their wear and RCF performance than the two proposed RCF mitigation measures. Based on the finding of the study on two RCF mitigation measures it was recommended that a conformal wheel profile be developed to spread the wheel wear across the tread to reduce the occurrence and propagation of RCF cracks, while still maintaining low wheel wear rates. A comparative study of this new wheel profile design and the current wheel profile design was therefore performed using multibody dynamics simulation together with numerical wheel wear and RCF predictions. The advantages of the conformal wheel profile design were illustrated by evaluating the worn shape and resulting kinematic behaviour of the conformal design. The conformal design had a steadier equivalent conicity progression and a smaller conicity range compared with the current wheel profile design over the wheel’s wear life. The combination of a conformal wheel profile design with 2 mm hollow wear and inadequate adherence to grinding tolerances often result in two-point contact, thereby increasing the probability of RCF initiation. The conformal wheel profile design was shown to have many wear and RCF benefits compared with the current wheel profile design. However, implementation of such a conformal wheel profile must be accompanied by improved rail grinding practices to ensure rail profile compliance. Based on these findings an approach is proposed where the conformal wheel profile design together with improved compliance of the in-service rail profiles to the target rail profile are implemented. This has the potential to reduce RCF initiation on South Africa’s iron ore export line. / Thesis (PhD)--University of Pretoria, 2017. / Mechanical and Aeronautical Engineering / PhD / Unrestricted
40

Improving the Fatigue Life of Cylindrical Thread Rolling Dies

Willens, David C. 14 May 2020 (has links)
Thread rolling is a unique metal forming process which is commonly used to form screw threads on threaded fasteners and precision leadscrews at relatively high rates of speed. Threads are formed on a cylindrical blank by flat or cylindrical dies having the reverse form on them, which rotate and penetrate the blank simultaneously, to plastically deform it into a precise geometry. Thread rolling dies are exposed to a complex state of cyclical contact stresses that eventually cause the dies to fail by fatigue and wear. The stress state is not easily ascertained through standard analytical models due to complex geometry and process conditions. This research seeks to better understand the state of contact stresses present in cylindrical thread rolling dies as they form material, to aid in identifying and testing economical methods of improving thread rolling die fatigue life. Some work has been published on using FEA simulation software to model the thread rolling process, but no work has been published on using FEA software to analyze the stresses in thread rolling dies. DEFORM®-3D Forming Simulation Software by Scientific Forming Technologies Corporation in Columbus, Ohio was used to simulate the throughfeed thread rolling process and model the state of stresses in the dies. The results were compared to the Hertzian contact stress model and the Smith Liu equations for rolling and sliding friction. Fatigue life prediction methods involving S-N curves, surface fatigue strength, and Weibull probability distributions were tested using the simulation data against field results. An optimized die design was generated from a design of experiments simulating different die design geometry. Findings show that field failures correlate well to the DEFORM® simulation results. The Hertz model with Smith Liu equations improved correlation with the simulation. Fatigue life prediction models correlated reasonably well to field results using the simulation data for inputs. These findings can aid in selecting appropriate die materials, design parameters, and fatigue life treatments.

Page generated in 0.3185 seconds