• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Load flow control and optimization of Banverket’s 132 kV 16 2/3 Hz high voltage grid

Lindén, Annica, Ågren, Anna January 2005 (has links)
<p>The purpose of this thesis was to investigate the possibility of power flow control, on a section of a railway grid fed by rotary converters, using an extra feeding line. Two possible solutions for the power flow control were examined. The first using a series reactance in connection to each converter station and the second by changing the tap changer level of the transformer between the converter station and the feeding line.</p><p>In the two models a distance, comparable to the distance between Boden and Häggvik, in Stockholm, was used. The simulations were performed using the software SIMPOW.</p><p>The results from the performed simulations show that series reactances, under the stated conditions, can essentially improve the power flow. To implement this air coils with inductances in the approximate size of 10 to 45 mH could be used. Further, the tap changer levels of the transformer may be used, for individual converter stations, as a way to control the reactive power flow.</p>
2

Load flow control and optimization of Banverket’s 132 kV 16 2/3 Hz high voltage grid

Lindén, Annica, Ågren, Anna January 2005 (has links)
The purpose of this thesis was to investigate the possibility of power flow control, on a section of a railway grid fed by rotary converters, using an extra feeding line. Two possible solutions for the power flow control were examined. The first using a series reactance in connection to each converter station and the second by changing the tap changer level of the transformer between the converter station and the feeding line. In the two models a distance, comparable to the distance between Boden and Häggvik, in Stockholm, was used. The simulations were performed using the software SIMPOW. The results from the performed simulations show that series reactances, under the stated conditions, can essentially improve the power flow. To implement this air coils with inductances in the approximate size of 10 to 45 mH could be used. Further, the tap changer levels of the transformer may be used, for individual converter stations, as a way to control the reactive power flow.

Page generated in 0.0623 seconds