1 |
A Timescale Estimating Model for Rule-Based SystemsMoseley, Charles Warren 12 1900 (has links)
The purpose of this study was to explore the subject of timescale estimating for rule-based systems. A model for estimating the timescale necessary to build rule-based systems was built and then tested in a controlled environment.
|
2 |
Multimedia and live performanceWillcock, Ian January 2012 (has links)
The use of interactive multimedia within live performance is now well established and a significant body of exciting and sophisticated work has been produced. However, almost all work in the field seems to start by creating at least some of the software and hardware systems that will provide the infrastructure for the project, an approach which might involve significant duplication of effort. The research described in this thesis sets out to discover if there are common features in the practice of artists from a range of performance backgrounds and, if so, whether the features of a system which might support these common aspects could be established. Based on evidence from a set of interviews, it is shown that there are indeed common factors in work in this field, especially the intensive linking of elements in performances and the use of triggering or cuing. A statement of requirements for a generic system to support work in digital performance is then established based on interview analysis and personal creative work. A general model of live performance, based on set theory, is described which provides a rationale for the integration of digital technology within live performance. A computational model outlining the formal requirements of a general system for use in live performance is then presented. The thesis then describes the creation of a domain specific language specifically for controlling live performance and the development of a prototype reference implementation of a generic system, the Live Interactive Multimedia Performance Toolkit (LIMPT). The system is then evaluated from a number of standpoints including a set of criteria established earlier in the study. It is concluded that, while there are many resources currently used by artists working in digital performance (a comprehensive survey of current resources is presented), none offer the combination of functionality, usability and scalability offered by the prototype LIMPT system. The thesis concludes with a discussion of possible future work and the potential for increased creative activity in multimedia and live performance.
|
3 |
An exploration of student performance, utilization, and attitude to the use of a controlled content sequencing web based learning environment.BROWN, Justin, j.brown@ecu.edu.au January 2005 (has links)
#DEFAULT
|
4 |
Office Rent Variation In Istanbul Cbd: An Application Of Mamdani And Tsk-type Fuzzy Rule Based SystemKarimov, Azar 01 August 2010 (has links) (PDF)
Over the past decade, fuzzy systems have gained remarkable acceptance in many fields including control and automation, pattern recognition, medical diagnosis and forecasting. The fuzzy system application has also been accepted as a promising approach to dealing with uncertainty in real estate valuation analysis. This is mainly due to the necessity of coping with a large number of qualitative and quantitative variables that affect the value of a real property. The appraisers use a great deal of judgment to identify both the characteristics that contribute to property values and the relationships among these characteristics in order to derive estimates of market values. This thesis uses the two widely-used fuzzy rule-based systems / namely the Mamdani and Takagi- Sugeno-Kang (TSK) type fuzzy models in an attempt to examine the main determinants of office rents in Istanbul Central Business District (CBD). The input variables of the fuzzy rule-based systems (FRBS) comprise:
i) physical attributes of office spaces and office buildings,
ii) lease contract terms, and
iii) tenants&rsquo / perception of the office rent determinants, tenants&rsquo / location of residence, tenants&rsquo / transportation modes, etc
and as the output the system proposes the office property&rsquo / s rental price. Obtaining office rent determinants is a significant issue for both practitioners and academics. While,practitioners use them directly in demand and sensitivity analyses, academics are more interested in the relative significance of these variables and their effect on the variation in office rent to forecast market behavior.
Our data set includes a detailed survey of 500 office spaces located in Istanbul CBD. We have carried out two Mamdani-type FRBS and two TSK-type FRBS for the office space and office building data sets. In these FRBS analyses, firstly the so-called representative office spaces are determined, then the average office space rents are estimated. Finally, the spatial variation in the average office rents across the CBD sub-districts, along with the Office space rent variations with
respect to different clusters, like number of workers, number of floors and so on, have been analyzed. We believe that presenting the spatial variation in office rents will make a noteworthy contribution both to the real estate investors and appraisers interested in Istanbul office market.
|
5 |
Fuzzy systémy s netradičními antecedenty fuzzy pravidel / Fuzzy systems with non-traditional antecedents of fuzzy rulesKlapil, Ondřej January 2015 (has links)
The aim of this work is to introduce a new type of fuzzy system AnYa. This system, unlike the classical fuzzy systems Takagi-Sugeno and Mamdani, uses a type of antecendent based on real data distribution. As part of the work there will be mentioned system programmed and its functionality will be verified on testing data.
|
6 |
Automatické zpracování českých soudních rozhodnutí / Processing of Czech court decisionsMaslowski, Bohdan January 2015 (has links)
Title: Processing of Czech court decisions Author: Bohdan Maslowski Department: Institute of Formal and Applied Linguistics Supervisor: Mgr. Barbora Vidová Hladká, Ph.D. Abstract: The objective of this thesis is a comparison of various language processing methods of Czech case-law documents. In particular, the tasks of extraction of information about parties (names, roles, addresses, etc.) and document classification by two criteria, subject and result have been solved. Machine learning methods are evaluated and compared to rule-based approach. For the purpose of training and evaluation of classifiers, a corpus of 400 Czech case-law documents has been created and manually annotated. The thesis includes a web application used for demonstration of the results of different approaches and a tool for running and evaluation of testing scenarios. Keywords: natural language processing, information extraction, legislative domain, machine learning, rule-based systems
|
7 |
Caracterização de eventos transitórios da qualidade da energia elétrica utilizando sistemas inteligentes e processamento de sinais. / Characterization of power quality transient events using Intelligent systems and signal processing.Vega García, Valdomiro 12 December 2012 (has links)
O diagnóstico de eventos que afetam a qualidade da energia elétrica tem se tornado preocupação de magnitude mundial, em especial em dois temas importantes que são: a localização relativa da origem do evento (LROE) e a classificação automática da causa fundamental de eventos (CACFE). O primeiro está relacionado com a identificação da fonte do evento, isto é, a montante ou a jusante do medidor de qualidade de energia (MQE). O segundo pode ser dividido em dois grupos: a classificação das causas internas e das causas externas. As causas internas estão relacionadas a eventos produzidos pela operação do sistema elétrico (energização ou desenergização do sistema, energização de transformador, chaveamento de capacitores dentre outros), e as causas externas estão vinculadas a eventos produzidos por faltas externas ao sistema elétrico (contato com galhos de árvore, animais, descargas atmosféricas, dentre outros). Ambos os temas, LROE e CACFE, são abordados nesta tese de doutorado. Para classificar eventos por causas internas ou externas é necessário antes definir se realmente trata-se ou não de um evento, para o qual é imprescindível conhecer a LROE. Este último necessita de um processo de segmentação das formas de onda de tensão e corrente para funcionar de forma correta. A segmentação identifica segmentos transitórios e não transitórios nas formas de onda e contribui também na extração de características para os diferentes algoritmos de classificação. Neste sentido, neste trabalho de pesquisa é proposta uma metodologia de diagnóstico da qualidade de eventos, focada em LROE e CACFE. Para isto foram desenvolvidos diferentes algoritmos de segmentação, extração de características e classificação, sendo criada uma ferramenta computacional em MatLab® que inclui pré-processamento de sinais de tensão e corrente de um banco de dados real fornecido por uma concessionária do Estado de São Paulo. Além disto, foram propostos novos algoritmos de LROE com resultados satisfatórios quando comparados com outros dois disponíveis na literatura científica. Para as causas internas, dois novos índices são propostos para separar eventos produzidos por faltas e energização de transformadores. Finalmente, são propostos novos algoritmos de extração de características baseados na energia dos coeficientes de decomposição da transformada wavelet bem como o algoritmo à trous modificado. São propostos dois novos vetores de descritores de energia (VDE) baseados no primeiro segmento transitório do evento. Para a classificação destes eventos foi utilizado um algoritmo de indução de regras de decisão (CN2), que gera regras de simples implementação. Todos os métodos de classificação utilizados nesta tese estão baseados em regras, sendo seu desempenho avaliado por meio da matriz de confusão. / Diagnosing events that affect power quality have become a worldwide concern, especially with respect to two important issues related to the relative location of the event origin (RLEO) and automatic cause classification of events (ACCE). The first one is related to the identification of the event source, i.e. either upstream or downstream in relation to the power quality meter (PQM). The second one can be subdivided into two groups, namely the classification of internal causes and of external causes. Internal causes are related to events produced by power system operation (connection or disconnection of feeders, power transformer inrush, capacitor switching, amongst others) and external causes that are related to events produced by external faults to the power system (network contacts to tree branches, animals contact, atmospheric discharges, amongst others). Both topics, RLEO and ACCE, are herein considered. In order to classify events due to internal or external causes, one should first define whether it is an actual event, what demands the RLEO. This makes use of a segmentation process applied to the voltage and current waveforms. The segmentation identifies the transient and stationary segments within the waveforms, contributing also to the feature extraction for different classification algorithms. Based on the aforementioned, this research proposes a methodology to diagnose power quality events, focusing on RLEO and ACCE. Different algorithms of segmentation, feature extraction and classification were then developed by the use of a computational tool implemented in MatLab®, that considers also the preprocessing of voltage and current signals in a real data base which was made available by a distribution company in Sao Paulo State. Besides that, new RLEO algorithms have shown satisfactory results when compared to algorithms published in the scientific literature. As for the internal causes, two new indices were proposed in order to separate events produced by faults or by the connection of power transformers. New algorithms for feature extraction are proposed, which are based on the energy of decomposition coefficients of the wavelet transform as well as the modified à trous algorithm. Two vectors of energy descriptors are proposed, which are based on the first transient segment of the event. The classification of such events was carried out by an induction algorithm of decision rules (CN2), that generates easily implementable rules. All classification methods utilized in this thesis are based on rules and their performances are assessed by the confusion matrix.
|
8 |
Caracterização de eventos transitórios da qualidade da energia elétrica utilizando sistemas inteligentes e processamento de sinais. / Characterization of power quality transient events using Intelligent systems and signal processing.Valdomiro Vega García 12 December 2012 (has links)
O diagnóstico de eventos que afetam a qualidade da energia elétrica tem se tornado preocupação de magnitude mundial, em especial em dois temas importantes que são: a localização relativa da origem do evento (LROE) e a classificação automática da causa fundamental de eventos (CACFE). O primeiro está relacionado com a identificação da fonte do evento, isto é, a montante ou a jusante do medidor de qualidade de energia (MQE). O segundo pode ser dividido em dois grupos: a classificação das causas internas e das causas externas. As causas internas estão relacionadas a eventos produzidos pela operação do sistema elétrico (energização ou desenergização do sistema, energização de transformador, chaveamento de capacitores dentre outros), e as causas externas estão vinculadas a eventos produzidos por faltas externas ao sistema elétrico (contato com galhos de árvore, animais, descargas atmosféricas, dentre outros). Ambos os temas, LROE e CACFE, são abordados nesta tese de doutorado. Para classificar eventos por causas internas ou externas é necessário antes definir se realmente trata-se ou não de um evento, para o qual é imprescindível conhecer a LROE. Este último necessita de um processo de segmentação das formas de onda de tensão e corrente para funcionar de forma correta. A segmentação identifica segmentos transitórios e não transitórios nas formas de onda e contribui também na extração de características para os diferentes algoritmos de classificação. Neste sentido, neste trabalho de pesquisa é proposta uma metodologia de diagnóstico da qualidade de eventos, focada em LROE e CACFE. Para isto foram desenvolvidos diferentes algoritmos de segmentação, extração de características e classificação, sendo criada uma ferramenta computacional em MatLab® que inclui pré-processamento de sinais de tensão e corrente de um banco de dados real fornecido por uma concessionária do Estado de São Paulo. Além disto, foram propostos novos algoritmos de LROE com resultados satisfatórios quando comparados com outros dois disponíveis na literatura científica. Para as causas internas, dois novos índices são propostos para separar eventos produzidos por faltas e energização de transformadores. Finalmente, são propostos novos algoritmos de extração de características baseados na energia dos coeficientes de decomposição da transformada wavelet bem como o algoritmo à trous modificado. São propostos dois novos vetores de descritores de energia (VDE) baseados no primeiro segmento transitório do evento. Para a classificação destes eventos foi utilizado um algoritmo de indução de regras de decisão (CN2), que gera regras de simples implementação. Todos os métodos de classificação utilizados nesta tese estão baseados em regras, sendo seu desempenho avaliado por meio da matriz de confusão. / Diagnosing events that affect power quality have become a worldwide concern, especially with respect to two important issues related to the relative location of the event origin (RLEO) and automatic cause classification of events (ACCE). The first one is related to the identification of the event source, i.e. either upstream or downstream in relation to the power quality meter (PQM). The second one can be subdivided into two groups, namely the classification of internal causes and of external causes. Internal causes are related to events produced by power system operation (connection or disconnection of feeders, power transformer inrush, capacitor switching, amongst others) and external causes that are related to events produced by external faults to the power system (network contacts to tree branches, animals contact, atmospheric discharges, amongst others). Both topics, RLEO and ACCE, are herein considered. In order to classify events due to internal or external causes, one should first define whether it is an actual event, what demands the RLEO. This makes use of a segmentation process applied to the voltage and current waveforms. The segmentation identifies the transient and stationary segments within the waveforms, contributing also to the feature extraction for different classification algorithms. Based on the aforementioned, this research proposes a methodology to diagnose power quality events, focusing on RLEO and ACCE. Different algorithms of segmentation, feature extraction and classification were then developed by the use of a computational tool implemented in MatLab®, that considers also the preprocessing of voltage and current signals in a real data base which was made available by a distribution company in Sao Paulo State. Besides that, new RLEO algorithms have shown satisfactory results when compared to algorithms published in the scientific literature. As for the internal causes, two new indices were proposed in order to separate events produced by faults or by the connection of power transformers. New algorithms for feature extraction are proposed, which are based on the energy of decomposition coefficients of the wavelet transform as well as the modified à trous algorithm. Two vectors of energy descriptors are proposed, which are based on the first transient segment of the event. The classification of such events was carried out by an induction algorithm of decision rules (CN2), that generates easily implementable rules. All classification methods utilized in this thesis are based on rules and their performances are assessed by the confusion matrix.
|
9 |
Rule-based In-network Processing For Event-driven Applications In Wireless Sensor NetworksSanli, Ozgur 01 June 2011 (has links) (PDF)
Wireless sensor networks are application-specific networks that necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. The most important challenge related to wireless sensor networks is the limited energy and computational resources of the battery powered sensor nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a continuous flow of raw sensor readings over the network. As communication operations are the most expensive in terms of energy usage,
the distributed processing of information is indispensable for viable deployments of applications in wireless sensor networks. This method not only helps in reducing the total amount of packets transmitted and the total energy consumed by sensor nodes, but also produces scalable and fault-tolerant networks. Another important challenge associated with wireless sensor networks is that the possibility of sensory data being imperfect and imprecise is high. The requirement of precision necessitates employing expensive mechanisms such as redundancy or use of sophisticated equipments. Therefore, approximate computing may need to be used instead of precise computing to conserve energy. This thesis presents two schemes that
distribute information processing for event-driven reactive applications, which are interested in higher-level information not in the raw sensory data of individual nodes, to appropriate
nodes in sensor networks. Furthermore, based on these schemes, a fuzzy rule-based system is proposed that handles imprecision, inherently present in sensory data.
|
10 |
Fuzzy systémy s netradičními antecedenty fuzzy pravidel / Fuzzy systems with non-traditional antecedents of fuzzy rulesKlapil, Ondřej January 2016 (has links)
The aim of this work is to introduce a new type of fuzzy system AnYa. This system, unlike the classical fuzzy systems Takagi-Sugeno and Mamdani, uses a type of antecendent based on real data distribution. As part of the work there will be mentioned system programmed and its functionality will be verified on testing data.
|
Page generated in 0.1296 seconds