• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zwei-Ebenen-Optimierung mit diskreter unterer und stetiger oberer Ebene

Fanghänel, Diana 16 December 2009 (has links) (PDF)
In der Dissertation werden Aufgaben der Zwei-Ebenen-Optimierung mit diskreter unterer und stetiger oberer Ebene betrachtet. Es werden die Struktur dieser Aufgaben analysiert und Optimalitätsbedingungen angegeben. Dies erfolgt sowohl für den optimistischen und den pessimistischen Lösungszugang als auch für einen Lösungszugang mittels Auswahlfunktionen. Anschließend werden die theoretischen Ergebnisse auf drei verschiedene Aufgabenklassen angewendet.
2

Levenberg-Marquardt Algorithms for Nonlinear Equations, Multi-objective Optimization, and Complementarity Problems

Shukla, Pradyumn Kumar 09 March 2010 (has links) (PDF)
The Levenberg-Marquardt algorithm is a classical method for solving nonlinear systems of equations that can come from various applications in engineering and economics. Recently, Levenberg-Marquardt methods turned out to be a valuable principle for obtaining fast convergence to a solution of the nonlinear system if the classical nonsingularity assumption is replaced by a weaker error bound condition. In this way also problems with nonisolated solutions can be treated successfully. Such problems increasingly arise in engineering applications and in mathematical programming. In this thesis we use Levenberg-Marquardt algorithms to deal with nonlinear equations, multi-objective optimization and complementarity problems. We develop new algorithms for solving these problems and investigate their convergence properties. For sufficiently smooth nonlinear equations we provide convergence results for inexact Levenberg-Marquardt type algorithms. In particular, a sharp bound on the maximal level of inexactness that is sufficient for a quadratic (or a superlinear) rate of convergence is derived. Moreover, the theory developed is used to show quadratic convergence of a robust projected Levenberg-Marquardt algorithm. The use of Levenberg-Marquardt type algorithms for unconstrained multi-objective optimization problems is investigated in detail. In particular, two globally and locally quadratically convergent algorithms for these problems are developed. Moreover, assumptions under which the error bound condition for a Pareto-critical system is fulfilled are derived. We also treat nonsmooth equations arising from reformulating complementarity problems by means of NCP functions. For these reformulations, we show that existing smoothness conditions are not satisfied at degenerate solutions. Moreover, we derive new results for positively homogeneous functions. The latter results are used to show that appropriate weaker smoothness conditions (enabling a local Q-quadratic rate of convergence) hold for certain reformulations. / Der Levenberg-Marquardt-Algorithmus ist ein klassisches Verfahren zur Lösung von nichtlinearen Gleichungssystemen, welches in verschiedenen Anwendungen der Ingenieur-und Wirtschaftswissenschaften vorkommen kann. Kürzlich, erwies sich das Verfahren als ein wertvolles Instrument für die Gewährleistung einer schnelleren Konvergenz für eine Lösung des nichtlinearen Systems, wenn die klassische nichtsinguläre Annahme durch eine schwächere Fehlerschranke der eingebundenen Bedingung ersetzt wird. Auf diese Weise, lassen sich ebenfalls Probleme mit nicht isolierten Lösungen erfolgreich behandeln. Solche Probleme ergeben sich zunehmend in den praktischen, ingenieurwissenschaftlichen Anwendungen und in der mathematischen Programmierung. In dieser Arbeit verwenden wir Levenberg-Marquardt- Algorithmus für nichtlinearere Gleichungen, multikriterielle Optimierung - und nichtlineare Komplementaritätsprobleme. Wir entwickeln neue Algorithmen zur Lösung dieser Probleme und untersuchen ihre Konvergenzeigenschaften. Für ausreichend differenzierbare nichtlineare Gleichungen, analysieren und bieten wir Konvergenzergebnisse für ungenaue Levenberg-Marquardt-Algorithmen Typen. Insbesondere, bieten wir eine strenge Schranke für die maximale Höhe der Ungenauigkeit, die ausreichend ist für eine quadratische (oder eine superlineare) Rate der Konvergenz. Darüber hinaus, die entwickelte Theorie wird verwendet, um quadratische Konvergenz eines robusten projizierten Levenberg-Marquardt-Algorithmus zu zeigen. Die Verwendung von Levenberg-Marquardt-Algorithmen Typen für unbeschränkte multikriterielle Optimierungsprobleme im Detail zu untersucht. Insbesondere sind zwei globale und lokale quadratische konvergente Algorithmen für multikriterielle Optimierungsprobleme entwickelt worden. Die Annahmen wurden hergeleitet, unter welche die Fehlerschranke der eingebundenen Bedingung für ein Pareto-kritisches System erfüllt ist. Wir behandeln auch nicht differenzierbare nichtlineare Gleichungen aus Umformulierung der nichtlinearen Komplementaritätsprobleme durch NCP-Funktionen. Wir zeigen für diese Umformulierungen, dass die bestehenden differenzierbaren Bedingungen nicht zufrieden mit degenerierten Lösungen sind. Außerdem, leiten wir neue Ergebnisse für positiv homogene NCP-Funktionen. Letztere Ergebnisse werden verwendet um zu zeigen, dass geeignete schwächeren differenzierbare Bedingungen (so dass eine lokale Q-quadratische Konvergenzgeschwindigkeit ermöglichen) für bestimmte Umformulierungen gelten.

Page generated in 0.0164 seconds