• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Entwicklung und Charakterisierung einer Elektron-Zyklotron-Resonanz-Ionenquelle mit integriertem Sputtermagnetron für die Erzeugung intensiver Ströme einfach geladener Aluminiumionen

Weichsel, Tim 12 July 2016 (has links) (PDF)
Es wurde eine Elektron-Zyklotron-Resonanz-Ionenquelle mit einer Mikrowellenfrequenz von2,45 GHz für die Produktion intensiver Ströme einfach geladener Metallionen entwickelt. Deren Beladung mit Metalldampf erfolgt über ein integriertes zylindrisches Sputtermagnetron, welches speziell für diese Aufgabe entworfen wurde. Die entstandene MECRIS, engl. Magnetron Electron Cyclotron Resonance Ion Source, vereinigt die ECR-Ionenquellentechnologie mit der Magnetron-Sputtertechnologie auf bisher einzigartige Weise und verkörpert so ein neues Metallionen-Quellenkonzept. Unter Verwendung eines Al-Sputtertargets konnte die Funktionsfähigkeit der MECRIS an dem Beispiel der Al+-Ionenerzeugung erfolgreich demonstriert werden. Der extrahierbare Al+-Ionenstrom wurde über einen neuartigen, im Rahmen der Arbeit entwickelten, Hochstrom-Faraday-Cup gemessen. Auf Basis numerischer Berechnungen wurde das Gesamtmagnetfeld so ausgelegt, dass die Permanentmagnete des Magnetrons und die Spulen der ECR-Quelle eine Minimum-B-Struktur erzeugen, welche einen effektiven Elektroneneinschluss nach dem magnetischen Spiegelprinzip ermöglicht. Gleichzeitig wird durch eine geschlossene ECR-Fläche, mit der magnetischen Resonanzflussdichte von 87,5 mT, eine optimale Heizung der Plasmaelektronen realisiert. Die mithilfe einer Doppel-Langmuir-Sonde gemessene Elektronentemperatur steigt in Richtung Quellenmitte an und beträgt maximal 11 eV. Geheizte Elektronen erlauben die effiziente Stoßionisation der Al-Atome, welche mit einer Rate von über 1E18 Al-Atome/s eingespeist werden und eine höchstmögliche Dichte von 2E10 1/cm³ aufweisen. Die MECRIS erzeugt hauptsächlich einfach geladene Ionen des gesputterten Materials (Al+) und des Prozessgases (Ar+). Der Al+-Ionenextraktionsstrom ist über die Erhöhung der Prozessparameter Sputterleistung, Mikrowellenleistung, Spulenstrom und Extraktionsspannung um eine Größenordnung bis auf maximal 135 μA steigerbar, was einer Stromdichte von 270 μA/cm² über die Extraktionsfläche von rund 0,5 cm² entspricht. Dies steht im Einklang mit der Prozessparameterabhängigkeit der anhand der Sonde bestimmten Plasmadichte, welche einen größtmöglichen Wert von etwa 6E11 1/cm³ annimmt. Das Verhältnis von extrahiertem Al+- zu Ar+-Ionenstrom kann durch Optimierung der Prozessparameter von 0,3 auf maximal 2 angehoben werden. Sondenmessungen des entsprechenden Ionendichteverhältnisses bestätigen diesen Sachverhalt. Um möglichst große Extraktionsströme und Al+/Ar+-Verhältnisse zu generieren, muss die ECR-Fläche demnach in dem Bereich der höchsten Al-Atomdichte in der Targetebene lokalisiert sein. Gegenüber dem alleinigen Magnetronplasma (ohne Mikrowelleneinspeisung) können mit dem MECRIS-Plasma um bis zu 140 % höhere Al+-Ionenströme produziert werden. Aus Sondenuntersuchungen geht hervor, dass dies eine Folge der um etwa eine Größenordnung gesteigerten Plasmadichte und der um rund 7 eV größeren Elektronentemperatur des MECRIS-Plasmas ist. Das MECRIS-Plasma wurde außerdem mittels optischer Emissionsspektroskopie charakterisiert und durch ein globales sowie ein zweidimensionales Modell simuliert. Die gewonnenen Prozessparameterabhängigkeiten der Plasmadichte, Elektronentemperatur sowie Al+- und Ar+-Ionendichte stimmen mit den Sondenergebnissen überein. Teilweise treten jedoch Absolutwertunterschiede von bis zu zwei Größenordnungen auf. Die Erhöhung der Sputterleistung und Extraktionsspannung über die derzeitigen Grenzen von 10 kW bzw. 30 kV sowie die Optimierung der Extraktionseinheit hinsichtlich minimaler Elektrodenblindströme bietet das Potential, den Al+-Ionenstrom bis in den mA-Bereich zu steigern. / An electron cyclotron resonance ion source working at a microwave frequency of 2.45 GHz has been developed in order to generate an intense current of singly charged metal ions. It is loaded with metal vapor by an integrated cylindrical sputter magnetron, which was especially designed for this purpose. The MECRIS (Magnetron Electron Cyclotron Resonance Ion Source) merges ECR ion source technology with sputter magnetron technology in a unique manner representing a new metal ion source concept. By using an Al sputter target, the efficiency of the MECRIS was demonstrated successfully for the example of Al+ ion production. The extractable ion current was measured by a newly developed high-current Faraday cup. On the basis of numerical modeling, the total magnetic field was set in a way that the permanent magnets of the magnetron and the coils of the ECR source are forming a minimum-B-structure, providing an effective electron trap by the magnetic mirror principle. Simultaneously, optimal electron heating is achieved by a closed ECR-surface at resonant magnetic flux density of 87.5 mT. Electron temperature increases towards the center of the source to a maximum of about 11 eV and was measured by a double Langmuir probe. Due to the heated electron population, efficient electron impact ionization of the Al atoms is accomplished. Al atoms are injected with a rate of more than 1E18 Al-atoms/s resulting in a maximum Al atom density of 2E10 1/cm³. The MECRIS produces mainly singly charged ions of the sputtered material (Al+) and the process gas (Ar+). The Al+ ion extraction current is elevated by one order of magnitude to a maximum of 135 μA by increasing the process parameters sputter magnetron power, microwave power, coil current, and acceleration voltage. Related to the extraction area of about 0.5 cm², the highest possible Al+ ion current density is 270 μA/cm². A corresponding process parameter dependency was found for the plasma density showing a peak value of about 6E11 1/cm³, which was deduced from probe measurements. The ratio of the extracted Al+ ion current to the Ar+ ion current can be enhanced from 0.3 to a maximum of 2 by optimization of the process parameters. This was confirmed by probe investigations of the appropriate ion density ratio. In conclusion, the ECR-surface needs to be located in the area of the highest Al atom density in the target plane in order to improve the extraction current and Al+/Ar+ ratio. The MECRIS plasma produces an Al+ ion current, which is up to 140 % higher compared to that of the sole sputter magnetron plasma (without microwave injection). As revealed by probe measurements, this effect is due to the higher plasma density and electron temperature of the MECRIS plasma, leading to a difference of one order of magnitude and 7 eV, respectively. Additionally, the MECRIS plasma has been characterized by optical emission spectroscopy and simulated by a global and a two-dimensional model. Retrieved process parameter dependencies of plasma density, electron temperature, Al+ ion density, and Ar+ ion density coincide with probe findings. Although a discrepancy of the absolute values of partly up to two orders of magnitude is evident. Potentially, the Al+ ion current can be enhanced to the mA-region by optimizing the ion extraction system for minimal idle electrode currents and by rising sputter magnetron power as well as acceleration voltage above the actual limits of 10 kW and 30 kV, respectively.

Page generated in 0.0263 seconds