• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Dynamically Assisted Schwinger Process:

Otto, Andreas 17 January 2018 (has links) (PDF)
The dynamical Schwinger effect refers to the creation of electron-positron pairs by a time dependent, spatially homogeneous electric field. It probes the fundamentals of quantum electrodynamics and is sought to be verified with upcoming high-intensity laser installations. In the dynamically assisted Schwinger effect, the pair yield is increased by orders of magnitude through the combination of fields of different field strength and frequency scales. In this thesis we, investigate both processes in the framework of a quantum kinetic equation. We are especially interested in what amplification factors can be achieved by the assisting field and whether intermediately large mode occupation numbers have a physical significance and could serve as a verification of the Schwinger effect. For the latter goal, we couple our system to a quantized radiation field that serves as a secondary (photon) probe and study its spectrum, as the afterglow of the dynamical Schwinger effect. / Als dynamischen Schwingereffekt bezeichnet man die Erzeugung von Elektron-Positron-Paaren durch ein zeitabhängiges, räumlich homogenes elektrisches Feld. Er dient zur Untersuchung der Grundlagen der Quantenelektrodynamik und es wird versucht, ihn an zukünftigen Hochintensitäts-Laseranlagen zu verifizieren. Bei dem dynamisch assistierten Schwingereffekt wird die Paarausbeute durch eine Kombination von Feldern mit unterschiedlichen Feldstärken- und Frequenzskalen um mehrere Größenordnungen erhöht. In dieser Dissertation untersuchen wir beide Prozesse im Rahmen einer quantenkinetischen Gleichung. Wir interessieren uns besonders dafür, welche Verstärkungsfaktoren durch das assistierende Feld erreicht werden können und ob intermediär große Modenbesetzungszahlen physikalische Signifikanz haben und als Verifizierung des Schwingereffekts dienen können. Für zweiteres Ziel koppeln wir unser System an ein quantisiertes Strahlungsfeld, das als sekundäres (Photonen-) Signal dient, und untersuchen dessen Spektrum, das Nachglühen des dynamischen Schwingereffekts.
2

Strong-Field QED Processes in Short Laser Pulses

Seipt, Daniel 18 February 2013 (has links) (PDF)
The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10^24 W/cm^2 and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton scattering. An enhancement of the two-photon process is found in strong laser pulses as compared to the corresponding weak-field process in perturbative QED.
3

Non-adiabatic quantum molecular dynamics: - Benchmark systems in strong laser fields - Approximate electron-nuclear correlations

Fischer, Michael 05 August 2014 (has links) (PDF)
The non-adiabatic quantum molecular dynamics (NA-QMD) method couples self-consistently classical nuclear motion with time-dependent density functional theory (TDDFT) in basis expansion for the electron dynamics. It has become a versatile approach to study the dynamics of atoms, molecules and clusters in a wide range of scenarios. This work presents applications of the NA-QMD method to important benchmark systems and its systematic extension to include quantum effects in the nuclear motion. Regarding the first objective, a complete study of the strong-field ionization and dissociation dynamics of nature’s simplest molecule H2+ is performed. By including all electronic and nuclear degrees of freedom and all reaction channels, molecular rotation is shown to play an important role in the ionization process. In addition, strong orientation effects in the energy deposition process of the Buckminster fullerene C60 in short intense laser pulses are surprisingly found in full dimensional calculations. Their consequences on the subsequent nuclear relaxation dynamics shed new light on available experimental data and future experiments are proposed to confirm the detailed predictions. Regarding the second objective, the NA-QMD formalism is basically extended to take electron-nuclear correlations into account. This extension is achieved by means of a trajectory surface hopping scheme in the adiabatic Kohn-Sham framework. First studied examples from collision physics and photochemistry illustrate the relevance and importance of quantum effects in the nuclear dynamics.
4

Improving predictions for collider observables by consistently combining fixed order calculations with resummed results in perturbation theory

Schönherr, Marek 12 March 2012 (has links) (PDF)
With the constantly increasing precision of experimental data acquired at the current collider experiments Tevatron and LHC the theoretical uncertainty on the prediction of multiparticle final states has to decrease accordingly in order to have meaningful tests of the underlying theories such as the Standard Model. A pure leading order calculation, defined in the perturbative expansion of said theory in the interaction constant, represents the classical limit to such a quantum field theory and was already found to be insufficient at past collider experiments, e.g. LEP or Hera. Such a leading order calculation can be systematically improved in various limits. If the typical scales of a process are large and the respective coupling constants are small, the inclusion of fixed-order higher-order corrections then yields quickly converging predictions with much reduced uncertainties. In certain regions of the phase space, still well within the perturbative regime of the underlying theory, a clear hierarchy of the inherent scales, however, leads to large logarithms occurring at every order in perturbation theory. In many cases these logarithms are universal and can be resummed to all orders leading to precise predictions in these limits. Multiparticle final states now exhibit both small and large scales, necessitating a description using both resummed and fixed-order results. This thesis presents the consistent combination of two such resummation schemes with fixed-order results. The main objective therefor is to identify and properly treat terms that are present in both formulations in a process and observable independent manner. In the first part the resummation scheme introduced by Yennie, Frautschi and Suura (YFS), resumming large logarithms associated with the emission of soft photons in massive Qed, is combined with fixed-order next-to-leading matrix elements. The implementation of a universal algorithm is detailed and results are studied for various precision observables in e.g. Drell-Yan production or semileptonic B meson decays. The results obtained for radiative tau and muon decays are also compared to experimental data. In the second part the resummation scheme introduced by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP), resumming large logarithms associated with the emission of collinear partons applicable to both Qcd and Qed, is combined with fixed-order next-to-leading matrix elements. While the focus rests on its application to Qcd corrections, this combination is discussed in detail and the implementation is presented. The resulting predictions are evaluated and compared to experimental data for a multitude of processes in four different collider environments. This formulation has been further extended to accommodate real emission corrections to beyond next-to-leading order radiation otherwise described only by the DGLAP resummation. Its results are also carefully evaluated and compared to a wide range of experimental data.

Page generated in 0.0155 seconds