• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Séries rationnelles et matrices génériques non commutatives

Lavallée, Sylvain January 2009 (has links) (PDF)
Dans ce travail, nous nous intéressons aux séries rationnelles et aux matrices génériques non commutatives. Dans le premier chapitre, on étudiera les polynômes de cliques du graphe pondéré. Soit C un graphe simple non orienté (sans boucles), on lui associe la somme des monômes (-1)i CiXi où Ci est le nombre de sous-graphes complets (cliques) sur i sommets. En pondérant les sommets par des entiers non négatifs, on définit les polynômes de cliques du graphe pondéré C comme étant la somme des monômes (-1)|B|xdeg(B), où B est un sous-graphe complet de C. On va montrer que l'ensemble de tels polynômes coïncide avec l'ensemble des polynômes réciproques des polynômes caractéristiques de matrices à coefficients entiers non négatifs. Au chapitre 2, on va généraliser ce polynôme une fois de plus en pondérant les sommets du graphe simple par des monômes de la forme αxd , où α est un réel positif et d, un entier non négatif. On va lui associer le polynôme de cliques généralisé comme la somme (-1)IBI (∏sЄB αsxds ), où B est un sous-ensemble commutatif de C et s est un sommet de B. On va montrer que l'ensemble de ces polynômes coïncide exactement avec l'ensemble des polynômes réciproques des polynômes caractéristiques à coefficients réels non négatifs. Le troisième chapitre porte sur la N-rationalité de certaines classes de séries. Tout d'abord, on va établir les conditions nécessaires et suffisantes nous permettant de décider de la N-rationalité d'une série de la forme (1-ax +bxk)-1, où a Є N, b Є Z, k ≥ 2 . Par la suite, on fera de même pour les séries de la forme (1-ax + bx2 + cx3)-1, où a Є N et b, c Є Z. Au Chapitre 4, on étudiera les propriétés des fonctions zêta associées aux automates et aux codes. On va montrer que le nombre de chemins bi-infinis dans A dont la période est n est égal au rang stable d'un certain mot non vide w; i.e. le rang de wn pour un n suffisamment grand. Par ailleurs, on montrera plusieurs propriétés de cette série telles la N-rationalité, l'apériodicité ou la divergence. Étant donné que plusieurs de ces résultats sont valides pour des automates non ambigus, ceux-ci s'appliqueront aux codes. On y présentera les propriétés de la fonction zêta des codes complets, des codes purs, des codes circulaires et des codes bifixes. Le chapitre 5 portera sur les matrices génériques stochastiques, i.e. les matrices à variables non commutatives soumises aux conditions stochastiques (somme des éléments de chaque ligne vaut 1). Il est bien connu dans la littérature que toute matrice stochastique a 1 comme valeur propre dont le vecteur propre à droite associé est t (1, ... , 1). Mais qu'en est-il du vecteur propre à gauche associé à cette même valeur propre? Dans le cas commutatif, on montrera que ce vecteur de la matrice M est le vecteur ligne des mineurs principaux M - In. Dans le cas non-commutatif, on montrera que les éléments de ce vecteur sont les inverses des dérivations des codes reconnus par l'automate dont M est la matrice associée, évalués dans un corps libre. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Séries rationnelles, Codes à longueurs variables, Fonction zêta, Automate, Corps libre, Matrices génériques, Polynômes de cliques.
2

Séries rationnelles et distributions de longueurs

Bassino, Frédérique 22 November 1996 (has links) (PDF)
Ce travail porte sur les séries à coefficients entiers positifs, sur les séries N-rationnelles et est centré autour de deux types de questions : le problème de la hauteur d'étoile et l'étude des propriétés des distributions de longueurs des codes. On étudie le problème de la hauteur d'étoile de séries rationnelles particulières : les séries N-rationnelles en une variable. On caractérise de différentes façons les séries N-rationnelles qui sont de hauteur d'étoile 1, et on donne un critère permettant de décider de la hauteur d'étoile d'une classe importante de séries N-rationnelles en une variable. L'étude de la hauteur d'étoile des séries N-rationnelles en une variable repose sur l'utilisation des propriétés de leurs représentations par des matrices. On établit, en particulier, à partir d'un résultat d'Handelman, une caractérisation du rayon spectral d'une matrice compagnon irréductible à coefficients entiers positifs. On étudie, ensuite, les distributions de longueurs des codes circulaires et des codes préfixes. On prouve trois nouveaux résultats concernant les codes circulaires. On généralise, dans plusieurs directions, la caractérisation des distributions de longueurs des codes circulaires établie dans le cas d'un alphabet fini par Schützenberger. D'une part, on remplace l'alphabet fini par un alphabet quelconque dont les éléments ont des poids, ce qui permet d'étendre le résultat à deux distributions de longueurs. D'autre part, on restreint les conditions, ce qui permet d'établir la décidabilité dans le cas d'une distribution finie. On donne une nouvelle formulation de cette caractérisation. Ce résultat, établi par des méthodes combinatoires, met en évidence la décidabilité dans le cas d'une distribution finie. On établit une condition nécessaire et suffisante pour qu'une suite d'entiers positifs soit la distribution de longueur d'un code circulaire maximal sur un alphabet fini. Enfin, on met en évidence les liens entre les séries génératrices des codes préfixes rationnels et une classe de séries N-rationnelles : les DOL-séries. On donne une condition suffisante pour qu'une suite N-rationnelle soit la distribution de longueurs d'un code rationnel préfixe maximal sur un alphabet à k lettres.

Page generated in 0.087 seconds