• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 8
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 13
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

SU-8 Based MEMS Process with Two Metal Layers using α-Si as a Sacrificial Material

Ramadan, Khaled S. 04 1900 (has links)
Polymer based microelectromechanical systems (MEMS) micromachining is finding more interest in research and applications. This is due to its low cost and less time processing compared with silicon MEMS. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic devices. In addition to being processed with low cost, it is a biocompatible material with good mechanical properties. Also, amorphous silicon (α-Si) has found use as a sacrificial layer in silicon MEMS applications. α-Si can be deposited at large thicknesses for MEMS applications and also can be released in a dry method using XeF2 which can solve stiction problems related to MEMS applications. In this thesis, an SU-8 MEMS process is developed using amorphous silicon (α-Si) as a sacrificial layer. Electrostatic actuation and sensing is used in many MEMS applications. SU-8 is a dielectric material which limits its direct use in electrostatic actuation. This thesis provides a MEMS process with two conductive metal electrodes that can be used for out-of-plane electrostatic applications like MEMS switches and variable capacitors. The process provides the fabrication of dimples that can be conductive or non-conductive to facilitate more flexibility for MEMS designers. This SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were tuned for two sets of thicknesses which are thin (5-10μm) and thick (130μm). Chevron bent-beam structures and different suspended beams (cantilevers and bridges) were fabricated to characterize the SU-8 process through extracting the density, Young’s Modulus and the Coefficient of Thermal Expansion (CTE) of SU-8. Also, the process was tested and used as an educational tool through which different MEMS structures were fabricated including MEMS switches, variable capacitors and thermal actuators.
12

Living, laughing, and loving in Guatemala City : a practical theology of peacebuilding

Aguilar Ramirez, Joel David January 2020 (has links)
Guatemala City is a city of contrasts, a city that meshes beauty and affliction. The beauty is reflected in the landscape and its people; affliction, however, is woven throughout Guatemalan history and expressed through the collective woundedness of Guatemalan society. After more than five hundred years of colonialism and coloniality, and twenty-four years after the signing of the peace accords between the army and the revolutionary movement in 1996, Guatemalans still carry their collective woundedness into all areas of personal and public life. For that reason, this dissertation responds to the question, what will a practical theology of peacebuilding look like in Guatemala City in response to the collective woundedness of Guatemalan society? In order to respond to the question presented above, I use the paradigms of practical theology, liberation theology, and mimetic theory in dialogue with each other to provide a relevant, contextual, and liberative response. In the search for an answer, I interviewed fourteen grassroots leaders from the CMT Guatemala network, and I explored their faith practices in relation to the Guatemalan collective woundedness. The process follows three steps. Firstly, I provide a description of the Guatemalan context, and the theory-laden practices of the interviewed grassroots leaders. Secondly, I framed the dissertation within contextual theology in order to develop a practical theology of liberation that is contextually relevant and cross-contextually applicable. Finally, the theory-laden practices that the interviews and focus groups called forth helped me propose a practical theology of liberation that responds to the Guatemalan collective woundedness through the ethics of what I call Human Catechism. Human Catechism is a term conceived in community, though proposed for the first time in this dissertation. Human Catechism begins with the ethics of love. It is the process of developing faith practices that help us reimagine each other’s humanity in the midst of global sacrificial theology. In this dissertation, I propose that Human Catechism is a practical theology of peacebuilding and liberation that seeks to heal the collective woundedness of not only the Guatemalan context, but also other environments around the world. This dissertation contributes in three ways to the field of practical theology. Firstly, it applies René Girard’s mimetic theory to field of practical theology. Secondly, it provides a tool that could be used for contextual analysis. I developed interdependent categories for contextual analysis that can easily be translated to other developing countries of the global south. Finally, it contributes at the local level empowering grassroots leaders to begin conversations that will allow them to decolonise their faith practices, and hermeneutics. / Thesis (PhD)--University of Pretoria, 2020. / Practical Theology / PhD / Unrestricted
13

Biofilm treatment, cleaning and control strategies for membrane desalination applied for drinking water production

Nava Ocampo, Maria F. 10 1900 (has links)
The global demand for potable water has increase the use of chemicals to clean or prevent undesirable biofouling in reverse osmosis membranes. Biofouling is the growth and accumulation of biomass that generates an unacceptable performance decline. To date, a thoroughly efficient and green method to remove, prevent or treat biofouling in water treatment systems has not been developed. The studies carried out during my Ph.D. aim to develop greener and more efficient biofuling prevention/cleaning methods. The first two studies introduce a polyelectrolyte coating with the atypical characteristic of being removed and reapplied under operating conditions. After the biofilm develops on the coating, both biomass and coating can be removed with brine. The application of the coating can be done in-situ without hindering membrane performance. Using this procedure, both biofilm and coating could be simultaneously removed, leaving a clean surface. The biofouled coated membrane had two-fold higher permeate flux recovery compare to the non-coated. The sacrificial polyelectrolyte coating offers a greener solution for biofouling treatment in membrane systems. As an alternative to harsh chemicals, natural deep eutectic solvents (NADES) are presented as an alternative for biofilm treatment. Our results indicate that the NADES could solubilize up to ≈70% of the main components of the biofilm. The biofilm is weakened by the biomolecule’s solubilization, which could enhance biofilm removal. NADES have a great potential to be used for biofilm and avoid the currently used solvents. The last chapter is focused on understanding the structural characteristics and stability of NADES composed of betaine, urea, and water. The NADES composition and the water content is of significant relevance for its stability and supramolecular structure. Our experimental and computational results show that water is of crucial importance to the NADES supramolecular structure and stability. Understanding the NADES characteristics leads to finding better applications and giving insights into the interaction that these solvents have with other molecules, such as biopolymers or proteins. Even though there is still further research to be done, the studies presented on this thesis are a step forward towards finding and understanding greener solutions for biofilm treatment in water treatment systems.
14

Leadership sacrifice for organisational change

Chetty, Trevlyn Albert 16 February 2013 (has links)
As organisations strive to become more competitive and leaner, leadership and leading change have become key ingredients in the recipe for success. However leaders in times of difficult organisational change may not be effective in leading the change for themselves and their people. The leader’s ability to see and work beyond his or her personal needs is becoming more prevalent - leaders like Nelson Mandela and Mahatma Ghandi showed a special kind of behaviour that was fulfilling to a greater purpose.This has prompted the need to gain a deeper understanding into self-sacrificial leadership that will bring about a crucial benefit to organisational sustainability by increasing the ability to lead change and shape leaders into ‘Level 5’ leadership. This qualitative research was accomplished by collecting primary data through 15 semi-structured in-depth interviews from South African business leaders.The findings in terms of the factors that encourage a leader to self-sacrifice their needs for the organisation reveal that it is not about self, but what is best for the organisation as well as the people. Self-motivation, managing own emotions, and internalisation were the findings of the process which the leader goes through in processing loss to lead others on the journey of change. Lastly, the personality traits of leaders who have the strength to lead change and are prepared to sacrifice themselves were found to be an advocate for the value of their people; have humility at their core; and are bold, outspoken and strong minded with a gentle exterior. Recommendations were centered on the crucial role of organisations in shaping an authentic leadership environment and ingredients for leaders of the 22nd century.As a result, this research demonstrates leadership is about self-sacrifice, managing change and leading people. / Dissertation (MBA)--University of Pretoria, 2012. / Gordon Institute of Business Science (GIBS) / unrestricted
15

BLAST DAMAGE MITIGATION IN SUBMERGED SYSTEMS. PHASE I: INTERNAL EXPLOSION

Khalifa, Yasser 11 1900 (has links)
This thesis is focused on quantifying the dynamic performance of lightweight metal sandwich systems under confined explosions, where this effort represents the first of a multi-phase comprehensive research program that is focused on developing blast damage mitigation techniques in submerged structures. A confined explosion occurrence inside such facilities may lead to paralyzing all operations depending on the functions of the affected sections. Subsequently, using sacrificial cladding placed as a physical barrier over critical components that might be vulnerable to a potential explosion is considered to be an effective blast damage mitigation technique. Furthermore, sandwich panels can be an ideal system to be used as sacrificial cladding, as it can be manufactured to possess high stiffness-to-weight ratio and superior energy absorption capabilities. Consequently, an experimental program was performed to investigate the performance of lightweight cold-formed steel sandwich panels under both quasi-static loads and confined explosions, where a total of fifty-seven sandwich panels were tested, considering various core configurations, different core sheet thickness, and different blast load intensity levels. The American ASCE/SEI 59-11 and The Canadian CSA/ S850-12 blast design standards predict the dynamic response of a structure component based on the static resistance function by applying dynamic increase factors. Subsequently, the static resistance functions for the proposed panel configurations were investigated experimentally and compared with the introduced analytical model, in order to quantify accurately the inelastic panel response. The quasi-static test program was performed in two stages, where the first included eighteen single layer core sandwich panels, which represented longitudinal and transverse corrugated core configurations. The results of the first stage configurations demonstrated an efficient strength and stiffness, but showed a lack in energy absorption capabilities and ductility capacity. Therefore, in the second stage, different core configurations were developed, including twenty-one panels representing Bi-directional and X-core double layered core configurations and its counterpart Uni-directional single layer core configuration. The results of the second stage demonstrated an enhancement in the ductility and energy absorption capabilities compared to the configurations tested in the first stage. The residual deformations and failure modes demonstrated were assessed and discussed in details, where web crippling, local buckling and global buckling induced by shear or flexurewere determined. In general the static resistance functions for each tested panel were used to quantify the panels’ yield loads, ultimate capacities, and corresponding displacement levels. Moreover, the influences of both the core configuration and the core sheet thickness on the panels’ stiffness, ductility levels and energy absorption were quantified. Based on the conclusions of the static testing and considering the ductility, capability of energy absorption, and the behavior beyond the elastic zone, two different core configurations were chosen to be tested under confined explosions. Eighteen panels were tested in a cylindrical shape blast chamber representing a typical submerged structure under different scaled distances ranged from 2.82 to 1.09 m/kg1/3, in order to demonstrate different damage state levels in accordance with the blast design standards (ASCE/SEI 59-11, CSA/ S850-12). In the blast testing results, the incident and reflected pressure time histories of the blast wave were measured, while the modified Friedlander equation was used to fit the first positive phase of the reflected pressure histories. In addition, the displacement response histories of the back face of the tested panels were recorded. The measured values of peak incident pressure, peak reflected pressure, incident impulse and the reflected impulse were compared to the predicted values using ConWep (Hyde 1990) considering the spherical explosion, and have shown a good agreement. Furthermore, the failure modes and the post blast damage were determined and compared to the static observations. In order to complement the experimental program, a nonlinear inelastic single degree of freedom model was developed in order to predict the dynamic response of the sandwich panels. The model used the recorded blast load and the static resistance while applying the dynamic increase factors recommended by the standards (ASCE/SEI 59-11, CSA/ S850-12). The model results were in a good agreement with the experimental data. Furthermore, the different ductility and support rotation values obtained experimentally and predicted analytically were related to the different damage levels specified by blast standards. Finally, the influence of sandwich panel core configuration on the dynamic blast response of the tested sandwich panels was discussed. / Thesis / Doctor of Philosophy (PhD)
16

Al-Ga Sacrificial Anodes: Understanding Performance via Simulation and Modification of Alloy Segregation

Kidd, Michael Scott Jr. 19 April 2019 (has links)
Marine structures must withstand the corrosive effects of salt water in a way that is low cost, reliable, and environmentally friendly. Aluminum satisfies these conditions, and would be a good choice for a sacrificial anode to protect steel structures if it did not passivate. However, various elements can be added to aluminum to prevent this passivation. Currently, Al-Ga alloys are used commercially as sacrificial anodes but their performance is not consistent. In this research, Thermo-Calc software was used to simulate various aspects of the Al-Ga system in an attempt to understand and potentially correct this reliability issue. Simulations showed that gallium segregates to the grain boundaries during solidification and then diffuses back into the grains during cooling to room temperature. Simulations also suggest that faster cooling rates and larger grains cause the potential segregation of gallium at the grain boundaries to remain after cooling. A set of aluminum plus 0.1% weight percent gallium alloy plates were produced with varying cooling rates, along with a control set (cooled slowly in a sand mold). Some samples were later homogenized via annealing. Samples were subjected to a 168 hour long galvanostatic test to assess voltage response. The corrosion performance of samples was found to have both consistent and optimal voltage range when subjected to quick cooling rates followed by annealing. Testing samples at near freezing temperature seems to completely remove optimal corrosion behavior, suggesting that there are multiple causes for the voltage behavior. / Master of Science / Ships must withstand the corrosive effects of salt water in a way that is low cost, reliable, and environmentally friendly. Aluminum has properties which could allow a plate of it to rust instead of a ship it is attached to, thus protecting the ships from rusting. However, because aluminum usually does not rust, gallium can be added to aluminum to allow it to rust. Currently, aluminum-gallium alloys are used commercially to protect ships, but their performance is not consistent. In this research, various aspects of the aluminum-gallium system were simulated in an attempt to understand and potentially correct this reliability issue. Simulations showed that the gallium concentration may not be uniform in the alloy, and various conditions can cause the gallium concentration to be inconsistent. A set of aluminum-gallium alloy plates were cast in molds from liquid aluminum. Some of the plates were cooled quickly, and some cooled slowly. Some samples were later heated in an oven at high temperatures in an attempt to even out the gallium concentration. Samples were subjected to tests to observe corrosion behavior. The corrosion performance of samples was found to be best when subjected to quick cooling rates followed by the oven heating. Testing the samples in cold temperatures seemed to remove the desired corrosion behavior, suggesting that there are multiple reasons for the inconsistent corrosion behavior of aluminum gallium.
17

Machine Learning, Optimization, and Anti-Training with Sacrificial Data

Valenzuela, Michael Lawrence January 2016 (has links)
Traditionally the machine learning community has viewed the No Free Lunch (NFL) theorems for search and optimization as a limitation. I review, analyze, and unify the NFL theorem with the many frameworks to arrive at necessary conditions for improving black-box optimization, model selection, and machine learning in general. I review meta-learning literature to determine when and how meta-learning can benefit machine learning. We generalize meta-learning, in context of the NFL theorems, to arrive at a novel technique called Anti-Training with Sacrificial Data (ATSD). My technique applies at the meta level to arrive at domain specific algorithms and models. I also show how to generate sacrificial data. An extensive case study is presented along with simulated annealing results to demonstrate the efficacy of the ATSD method.
18

Zinc and zinc alloy composite coatings for corrosion protection and wear resistance

Tuaweri, Johnnie T. January 2005 (has links)
Zinc and its alloys are among the most widely utilised metallic coatings for the sacrificial protection of steel. Although excellent in this mode of protection, these coatings are often less durable when subjected to environments of combined wear and corrosion due to their intrinsic relative softness and ductility. A possible and fast growing way of improving the durability of these coating is by the codeposition of inert particles into the zinc and zinc-alloy matrix. The main aim of this research was therefore to improve the durability of zinc and zinc-nickel coatings by the incorporation of inert particles via electrolytic codeposition methods. The first five chapters of this thesis comprise literature review on the electrodeposition of zinc, its alloys and composite electrodeposition in general. A major part of which was dedicated to the review of various conventional methods and parameters such as current density, agitation, temperature, solution composition, bath additives and pH usually investigated in electrodeposition. The experimental work was principally based on DC electrodeposition and was aimed at understanding the deposition behaviour of zinc and zinc-nickel electrodeposition baths, conditions which influence them and solution compatibility to the introduction of silica particles. A systematic study on the deposition behaviour of both zinc/silica and zinc-nickel/silica composite baths was carried out with particular interest on the rate of particle incorporation and the influence of particles on zinc-nickel alloy deposition. The complimentary codeposition behaviour of the nickel and silica particles was observed. The influence of bath additives such as N,N Dimethyldodecylamine (NND) and sodium nitrate on the rate of silica incorporation was also studied. Both additives were found to improve the rate of particle incorporation for the zinc/silica. The morphologies and compositions of the coatings were analysed with the use of SEM and FEGSEM. Corrosion performance studies were carried out in a neutral salt spray chamber and linear polarisation resistance methods used to determine barrier corrosion properties of the coatings. Anodic polarisation studies were also carried out. The results show an improvement in the corrosion performance of these coatings with the addition of silica particles Reciprocating wear tests were used to determine the wear behaviour of the coatings in terms of weight loss. Improvement in wear resistance was not observed in the zinc/silica coatings probably due to the high content of silica in the coatings. Lower silica contents may be required for the desired improvements. However, there were obvious improvements in the wear behaviour of the zinc-nickel/silica coatings due to the presence of the silica particles.
19

Use Of Sacrificial Embankments To Minimize Bridge Damage From Scour During Extreme Flow Events

Brand, Matthew Willi 01 January 2016 (has links)
The leading cause of bridge failure has often been identified as bridge scour, which is generally defined as the erosion or removal of streambed and/or bank material around bridge foundations due to flowing water. These scour critical bridges are particularly vulnerable during extreme flood events, and pose a major risk to human life, transportation infrastructure, and economic sustainability. Climate change is increasing the intensity and persistence of large flow events throughout the world, further straining bridge infrastructure. Retrofitting the thousands of undersized and scour critical bridges to more rigorous standards is prohibitively expensive, and current countermeasures inadequately address the core problems related to bridge scour. This research tested the efficacy of using approach embankments as intentional sacrificial "fuses" to protect the integrity of bridges with minimal damage during large flow events by allowing the streams to access their natural floodplain and reduce channel velocities. The concept was evaluated using the Hydrologic Engineering Center's River Analysis System (HEC-RAS) models. Steady flow models were developed for three specific bridges on two river reaches. Bayesian streamflow return period estimators were developed for both river reaches using available United States Geological Survey (USGS) stream gauge data to evaluate sacrificial embankments under non-stationary climatic conditions. Fuse placement was determined to be a cost effective scour mitigation strategy for bridges with suboptimal hydraulic capacity and unknown or shallow foundations. Additional benefits of fuses include reductions in upstream flood stage and velocity.
20

Measuring the effect of cathodic protection on the performance of thermally sprayed aluminium coatings at elevated temperature / Avaliação do efeito da proteção catódica no desempenho do revestimento de alumínio pulverizado termicamente submetido a altas temperaturas

Cé, Nataly Araújo January 2017 (has links)
Alumínio Pulverizado Termicamente (TSA) é amplamente utilizado em instalações offshore como revestimento de ânodo de sacrifício em tubulações de aço carbono. O transporte e a instalação desses componentes podem levar a pequenos danos no revestimento, o que pode expor a superfície do aço à água do mar. Sabe-se que o depósito calcário é formado na superfície do aço polarizado catodicamente. Assim, esta pesquisa avaliou o TSA aplicado por sistema de pulverização de arco duplo (TWAS) no aço ao carbono S355J2 + N quando ocorrem danos (holidays) para estudar a formação de depósitos calcários no aço e adquirir dados sobre o desempenho do TSA sob altas temperaturas. A aplicação de diferentes condições também foi considerada: presença de selantes; liga do revestimento (99,5% de Al e Al-5% de Mg) e condições enterradas/não enterradas. Dois tipos de experimentos foram realizados: i) testes em potencial livre sob temperaturas constantes (30, 60 e 90°C) e diferentes tamanhos de holidays (expondo 5, 10 e 20% da superfície do aço) e ii) testes sob gradient térmico onde óleo a ~125°C foi adicionado em uma torre polimérica e água externa a ~10°C ficou em contato com a superfície das amostras (tanto potencial livre como polarização de -950 mVAg/AgCl foram aplicados). Análises incluíram inspeção visual, microscópio eletrônico de varredura e difração de Raio-X. A partir dos testes em temperaturas constante, o TSA atingiu um bom potencial de proteção (-800 a -900 mVAg/AgCl) e pouca diferença nos resultados devido à diferença na composição doTSA e no tamanho do holiday foi observada. As taxas de corrosão foram mantidas entre 0,02 e 0,01 mm/ano. No ensaio sob gradiente térmico e potencial livre, a perda de revestimento e as taxas de corrosão foram de 0,4 a 0,002 mm/ano. Além disso, o potencial alcançado foi de uma faixa menor do que a obtida anteriormente (-745 a -835 mVAg/AgCl). No entanto, quando o TSA foi combinado com proteção catódica externa e gradiente térmico, a espessura do TSA foi satisfatório e as taxas de corrosão obtidas foram inferiores a 0,076 mm/ano. O depósito calcário formado no holiday protegeu o aço contra a corrosão e seu mecanismo de crescimento baseado nesta pesquisa foi construído. / Thermally Sprayed Aluminium (TSA) is widely used in offshore facilities as sacrificial anode coating for carbon-steel risers and pipelines. Transportation and installation of those components can lead to small damages in the coating, which can expose the steel surface to the seawater. It is known that calcareous deposit is formed on the cathodically polarised steel surface. Thus, this research evaluated the TSA applied by twin wire arc spray system (TWAS) on S355J2+N carbon-steel when damage (holidays) is present in order to study the calcareous deposit formation on steel and acquire data regarding the TSA performance at high temperatures. Application of different conditions was also considered: presence of sealing; coating alloy (99.5%Al and Al-5%Mg) and buried/unburied conditions. Generally, two types of experiment were conducted – i) tests at free potential at steady temperatures (30, 60 and 90°C) and different holiday sizes (exposing 5, 10 and 20% of the steel surface) and ii) tests under thermal gradient where oil at ~125°C was added in polymeric tower and external water at ~10°C was in contact with the samples surface (both free potential and polarisation of -950 mVAg/AgCl were applied). Methodology of analyses included visual inspection, scanning electron microscope and X-ray Diffraction. From the tests at steady temperatures, the TSA reached a very good protective potential (-800 to -900 mVAg/AgCl) and little difference in results due to difference in TSA composition and holiday size was observed. Corrosion rates were kept between 0.02 and 0.01 mm/year. From the thermal gradient test under free potential, the coating loss and corrosion rates were 0.4 to 0.002 mm/year. Also, the potential achieved was in a lower range than previously obtained (-745 to -835 mVAg/AgCl). However, when TSA was combined with external cathodic protection and thermal gradient, the thickness of the TSA was satisfactory and corrosion rates obtained were below 0.076 mm/year. The calcareous deposit formed within the holiday protected the steel substrate against corrosion and its growth mechanism based in this research was built.

Page generated in 0.0733 seconds