• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 5
  • 5
  • 2
  • 1
  • Tagged with
  • 48
  • 48
  • 15
  • 14
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Asymptotic Analysis of Interference in Cognitive Radio Networks

Yaobin, Wen 05 April 2013 (has links)
The aggregate interference distribution in cognitive radio networks is studied in a rigorous and analytical way using the popular Poisson point process model. While a number of results are available for this model for non-cognitive radio networks, cognitive radio networks present extra levels of difficulties for the analysis, mainly due to the exclusion region around the primary receiver, which are typically addressed via various ad-hoc approximations (e.g., based on the interference cumulants) or via the large-deviation analysis. Unlike the previous studies, we do not use here ad-hoc approximations but rather obtain the asymptotic interference distribution in a systematic and rigorous way, which also has a guaranteed level of accuracy at the distribution tail. This is in contrast to the large deviation analysis, which provides only the (exponential) order of scaling but not the outage probability itself. Unlike the cumulant-based analysis, our approach provides a guaranteed level of accuracy at the distribution tail. Additionally, our analysis provides a number of novel insights. In particular, we demonstrate that there is a critical transition point below which the outage probability decays only polynomially but above which it decays super-exponentially. This provides a solid analytical foundation to the earlier empirical observations in the literature and also reveals what are the typical ways outage events occur in different regimes. The analysis is further extended to include interference cancelation and fading (from a broad class of distributions). The outage probability is shown to scale down exponentially in the number of canceled nearest interferers in the below-critical region and does not change significantly in the above-critical one. The proposed asymptotic expressions are shown to be accurate in the non-asymptotic regimes as well.
12

Sistemas ponto de sela com uma aplicação a aceleração do Lagrangiano Aumentado / Saddle point systems with an application to the acceleration of the Augmented Lagrangian

Ramirez, Viviana Analia, 1976- 18 April 2008 (has links)
Orientador: Roberto Andreani / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T22:54:25Z (GMT). No. of bitstreams: 1 Ramirez_VivianaAnalia_M.pdf: 2563612 bytes, checksum: db80aac5c845975430fe4820638c7a46 (MD5) Previous issue date: 2008 / Resumo: Os sistemas ponto de sela surgem em uma grande quantidade de áreas de investiga¸c¿ao, como física, química, engenharia, reconstrução de imagens, etc. Portanto, s¿ao objeto de pesquisa, tanto as propriedades presentes neles como os métodos utilizados para a sua resolução. Diversos métodos foram desenvolvidos dependendo das características do sistema, alguns deles com a propriedade de preservar a estrutura da matriz do sistema. Neste trabalho utilizamos umo destes métodos para melhorar a precisão obtida pelo método ALGENCAN (Lagrangiano Aumentado usando GENCAN) em problemas de Programação Não Linear (PNL). Este método é muito robusto, ele obtém uma boa aproximação da solução com poucas iterações, mas perto da solução não consegue obter uma precisão muito exigente. Para melhorar esta precisão, aplicamos o método de Newton a um sistema KKT reduzido no ponto obtido por ALGENCAN, gerando um sistema ponto de sela. Para esta implementação utilizamos o método conhecido como fatoração LDLT , escolhido por sua propriedade de preservar a estrutura esparsa do sistema / Abstract: Saddle point systems arise in wide areas of research fields like physics, chemistry and engineering and images reconstructions, etc. Then, the properties of these systems and solving methods have been subjects of intense study in the last years. Depending upon the system properties, several methods were developed; some of these, exhibit the property of preserving the matrix structure system, like the sparsity. In this work, we have used one of these methods to improve the accuracy by using ALGECAN (Augmented Lagrangian using GENCAN) applied to Non-linear Programming (NLP) problems. This is a robust method which helps to get a good approximation to the solution. However, in several cases, it is not possible to get the desired accuracy. In order to improve the precision, we have applied Newton¿s method in a reduced KKT system, starting from a point given by ALGENCAN, which is a saddle point. We employ the so called LDLT factorization in order to implement Newton¿s method, which give us better accuracy / Mestrado / Otimização / Mestre em Matemática Aplicada
13

Paleoenvironment and shore displacement since 3200 BC in the central part of the  Långhundraleden Trail, SE Uppland

Katrantsiotis, Christos January 2013 (has links)
In this study, litho-, bio- and chronostratigraphic investigations combined with RTK GPSleveling have been carried out to reconstruct the paleoenvironment in the central part of theLånghundraleden Trail. The area displays four shallow lake basins of varyingmorphologies. The basins are now covered with peat as a result of infilling and overgrowth.The emergence of the saddle-point, i.e. the highest point of the underlying minerogenicsurface, was estimated to have occurred c. BC/AD. The isolation events of two basins, atc.12.4 and c.12.3 m a.s.l. west and east of the saddle-point, were dated to c.AD 20 andc.AD 30, respectively. By combining these isolation data with six previously investigatedbasins a shore displacement curve for the central part of the Långhundraleden Trail and thesurrounding area, i.e. east of the Ekoln basin was constructed. The curve indicates anaverage regressive shore displacement rate of c.6.2 mm/yr since c. 3200 BC. Around 1500BC, this trend was interrupted by a short period of retarded regression, correlated with theL4 event. The isolation ages of the basins in the Långhundraleden Trail appears relativelyyoung when compared to an average shore displacement rate of 5.6 mm/year in thenorthern part of L. Mälaren, west of the Ekoln basin. As the area is dominated by a fissurevalleylandscape, this discrepancy could be attributed to small-scale irregular tectonicmovements, which caused faster uplift rate, i.e. 6.2 mm/year, east of the Ekoln basin.
14

Analysis and Implementation of Preconditioners for Prestressed Elasticity Problems : Advances and Enhancements

Dorostkar, Ali January 2017 (has links)
In this work, prestressed elasticity problem as a model of the so-called glacial isostatic adjustment (GIA) process is studied. The model problem is described by a set of partial differential equations (PDE) and discretized with a mixed finite element (FE) formulation. In the presence of prestress the so-constructed system of equations is non-symmetric and indefinite. Moreover, the resulting system of equations is of the saddle point form. We focus on a robust and efficient block lower-triangular preconditioning method, where the lower diagonal block is and approximation of the so-called Schur complement. The Schur complement is approximated by the so-called element-wise Schur complement. The element-wise Schur complement is constructed by assembling exact local Schur complements on the cell elements and distributing the resulting local matrices to the global preconditioner matrix. We analyse the properties of the element-wise Schur complement for the symmetric indefinite system matrix and provide proof of its quality. We show that the spectral radius of the element-wise Schur complement is bounded by the exact Schur complement and that the quality of the approximation is not affected by the domain shape. The diagonal blocks of the lower-triangular preconditioner are combined with inner iterative schemes accelerated by (numerically) optimal and robust algebraic multigrid (AMG) preconditioner. We observe that on distributed memory systems, the top pivot block of the preconditioner is not scaling satisfactorily. The implementation of the methods is further studied using a general profiling tool, designed for clusters. For nonsymmetric matrices we use the theory of Generalized Locally Toeplitz (GLT) matrices and show the spectral behavior of the element-wise Schur complement, compared to the exact Schur complement. Moreover, we use the properties of the GLT matrices to construct a more efficient AMG preconditioner. Numerical experiments show that the so-constructed methods are robust and optimal.
15

Asymptotic Analysis of Interference in Cognitive Radio Networks

Yaobin, Wen January 2013 (has links)
The aggregate interference distribution in cognitive radio networks is studied in a rigorous and analytical way using the popular Poisson point process model. While a number of results are available for this model for non-cognitive radio networks, cognitive radio networks present extra levels of difficulties for the analysis, mainly due to the exclusion region around the primary receiver, which are typically addressed via various ad-hoc approximations (e.g., based on the interference cumulants) or via the large-deviation analysis. Unlike the previous studies, we do not use here ad-hoc approximations but rather obtain the asymptotic interference distribution in a systematic and rigorous way, which also has a guaranteed level of accuracy at the distribution tail. This is in contrast to the large deviation analysis, which provides only the (exponential) order of scaling but not the outage probability itself. Unlike the cumulant-based analysis, our approach provides a guaranteed level of accuracy at the distribution tail. Additionally, our analysis provides a number of novel insights. In particular, we demonstrate that there is a critical transition point below which the outage probability decays only polynomially but above which it decays super-exponentially. This provides a solid analytical foundation to the earlier empirical observations in the literature and also reveals what are the typical ways outage events occur in different regimes. The analysis is further extended to include interference cancelation and fading (from a broad class of distributions). The outage probability is shown to scale down exponentially in the number of canceled nearest interferers in the below-critical region and does not change significantly in the above-critical one. The proposed asymptotic expressions are shown to be accurate in the non-asymptotic regimes as well.
16

Numerické algoritmy pro analýzu hybridních dynamických systémů / Numerical Optimization Methods for the Falsification of Hybrid Dynamical Systems

Kuřátko, Jan January 2020 (has links)
Title: Numerical Optimization Methods for the Falsification of Hybrid Dynamical Systems Author: Jan Kuřátko Department: Department of Numerical Mathematics Supervisor: Stefan Ratschan, Institute of Computer Science, The Czech Academy of Sciences Abstract: This thesis consists of three published papers that contribute to the finding of error trajectories of hybrid dynamical systems. A hybrid dynamical system is a dynamical system that has both discrete and continuous state. For example, one can use it as a model for a thermostat in a room: Such a thermostat may have two discrete states, one where the heating is off, and another one, where the heating is on. Its continuous state is the temperature in the room. For such a model one may be interested in finding an error trajectory, that is, an evolution of the system that reaches an unsafe state that is to be avoided. Industry is in need of methods for automatized testing and verification of safety conditions in order to identify flaws in the design of systems. The thesis contains several contributions to finding error trajectories that are based on numerical optimization. Keywords: optimization, dynamical systems, saddle-point matrix
17

Constraint Preconditioning of Saddle Point Problems

Ladenheim, Scott Aaron January 2015 (has links)
This thesis is concerned with the fast iterative solution of linear systems of equations of saddle point form. Saddle point problems are a ubiquitous class of matrices that arise in a host of computational science and engineering applications. The focus here is on improving the convergence of iterative methods for these problems by preconditioning. Preconditioning is a way to transform a given linear system into a different problem for which iterative methods converge faster. Saddle point matrices have a very specific block structure and many preconditioning strategies for these problems exploit this structure. The preconditioners considered in this thesis are constraint preconditioners. This class of preconditioner mimics the structure of the original saddle point problem. In this thesis, we prove norm- and field-of-values-equivalence for constraint preconditioners associated to saddle point matrices with a particular structure. As a result of these equivalences, the number of iterations needed for convergence of a constraint preconditioned minimal residual Krylov subspace method is bounded, independent of the size of the matrix. In particular, for saddle point systems that arise from the finite element discretization of partial differential equations (p.d.e.s), the number of iterations it takes for GMRES to converge for theses constraint preconditioned systems is bounded (asymptotically), independent of the size of the mesh width. Moreover, we extend these results when appropriate inexact versions of the constraint preconditioner are used. We illustrate this theory by presenting numerical experiments on saddle point matrices that arise from the finite element solution of coupled Stokes-Darcy flow. This is a system of p.d.e.s that models the coupling of a free flow to a porous media flow by conditions across the interface of the two flow regions. We present experiments in both two and three dimensions, using different types of elements (triangular, quadrilateral), different finite element schemes (continuous, discontinuous Galerkin methods), and different geometries. In all cases, the effectiveness of the constraint preconditioner is demonstrated. / Mathematics
18

Solveurs performants pour l'optimisation sous contraintes en identification de paramètres / Efficient solvers for constrained optimization in parameter identification problems

Nifa, Naoufal 24 November 2017 (has links)
Cette thèse vise à concevoir des solveurs efficaces pour résoudre des systèmes linéaires, résultant des problèmes d'optimisation sous contraintes dans certaines applications de dynamique des structures et vibration (la corrélation calcul-essai, la localisation d'erreur, le modèle hybride, l'évaluation des dommages, etc.). Ces applications reposent sur la résolution de problèmes inverses, exprimés sous la forme de la minimisation d'une fonctionnelle en énergie. Cette fonctionnelle implique à la fois, des données issues d'un modèle numérique éléments finis, et des essais expérimentaux. Ceci conduit à des modèles de haute qualité, mais les systèmes linéaires point-selle associés, sont coûteux à résoudre. Nous proposons deux classes différentes de méthodes pour traiter le système. La première classe repose sur une méthode de factorisation directe profitant de la topologie et des propriétés spéciales de la matrice point-selle. Après une première renumérotation pour regrouper les pivots en blocs d'ordre 2. L'élimination de Gauss est conduite à partir de ces pivots et en utilisant un ordre spécial d'élimination réduisant le remplissage. Les résultats numériques confirment des gains significatifs en terme de remplissage, jusqu'à deux fois meilleurs que la littérature pour la topologie étudiée. La seconde classe de solveurs propose une approche à double projection du système étudié sur le noyau des contraintes, en faisant une distinction entre les contraintes cinématiques et celles reliées aux capteurs sur la structure. La première projection est explicite en utilisant une base creuse du noyau. La deuxième est implicite. Elle est basée sur l'emploi d'un préconditionneur contraint avec des méthodes itératives de type Krylov. Différentes approximations des blocs du préconditionneur sont proposées. L'approche est implémentée dans un environnement distribué parallèle utilisant la bibliothèque PETSc. Des gains significatifs en terme de coût de calcul et de mémoire sont illustrés sur plusieurs applications industrielles. / This thesis aims at designing efficient numerical solution methods to solve linear systems, arising in constrained optimization problems in some structural dynamics and vibration applications (test-analysis correlation, model error localization,hybrid model, damage assessment, etc.). These applications rely on solving inverse problems, by means of minimization of an energy-based functional. This latter involves both data from a numerical finite element model and from experimental tests, which leads to high quality models, but the associated linear systems, that have a saddle-point coefficient matrices, are long and costly to solve. We propose two different classes of methods to deal with these problems. First, a direct factorization method that takes advantage of the special structures and properties of these saddle point matrices. The Gaussian elimination factorization is implemented in order to factorize the saddle point matrices block-wise with small blocks of orders 2 and using a fill-in reducing topological ordering. We obtain significant gains in memory cost (up to 50%) due to enhanced factors sparsity in comparison to literature. The second class is based on a double projection of the generated saddle point system onto the nullspace of the constraints. The first projection onto the kinematic constraints is proposed as an explicit process through the computation of a sparse null basis. Then, we detail the application of a constraint preconditioner within a Krylov subspace solver, as an implicit second projection of the system onto the nullspace of the sensors constraints. We further present and compare different approximations of the constraint preconditioner. The approach is implemented in a parallel distributed environment using the PETSc library. Significant gains in computational cost and memory are illustrated on several industrial applications.
19

Computational Techniques for Coupled Flow-Transport Problems

Kronbichler, Martin January 2011 (has links)
This thesis presents numerical techniques for solving problems of incompressible flow coupled to scalar transport equations using finite element discretizations in space. The two applications considered in this thesis are multi-phase flow, modeled by level set or phase field methods, and planetary mantle convection based on the Boussinesq approximation. A systematic numerical study of approximation errors in evaluating the surface tension in finite element models for two-phase flow is presented. Forces constructed from a gradient in the same discrete function space as used for the pressure are shown to give the best performance. Moreover, two approaches for introducing contact line dynamics into level set methods are proposed. Firstly, a multiscale approach extracts a slip velocity from a micro simulation based on the phase field method and imposes it as a boundary condition in the macro model. This multiscale method is shown to provide an efficient model for the simulation of contact-line driven flow. The second approach combines a level set method based on a smoothed color function with a the phase field method in different parts of the domain. Away from contact lines, the additional information in phase field models is not necessary and it is disabled from the equations by a switch function. An in-depth convergence study is performed in order to quantify the benefits from this combination. Also, the resulting hybrid method is shown to satisfy an a priori energy estimate. For the simulation of mantle convection, an implementation framework based on modern finite element and solver packages is presented. The framework is capable of running on today's large computing clusters with thousands of processors. All parts in the solution chain, from mesh adaptation over assembly to the solution of linear systems, are done in a fully distributed way. These tools are used for a parallel solver that combines higher order time and space discretizations. For treating the convection-dominated temperature equation, an advanced stabilization technique based on an artificial viscosity is used. For more efficient evaluation of finite element operators in iterative methods, a matrix-free implementation built on cell-based quadrature is proposed. We obtain remarkable speedups over sparse matrix-vector products for many finite elements which are of practical interest. Our approach is particularly efficient for systems of differential equations.
20

Robust Nonlinear Model Predictive Control based on Constrained Saddle Point Optimization : Stability Analysis and Application to Type 1 Diabetes

Penet, Maxime 10 October 2013 (has links) (PDF)
This thesis deals with the design of a robust and safe control algorithm to aim at an artificial pancreas. More precisely we will be interested in controlling the stabilizing part of a classical cure. To meet this objective, the design of a robust nonlinear model predictive controller based on the solution of a saddle point optimization problem is considered. Also, to test the controller performances in a realistic case, numerical simulations on a FDA validated testing platform are envisaged.In a first part, we present an extension of the usual nonlinear model predictive controller designed to robustly control, in a sampled-data framework, systems described by nonlinear ordinary differential equations. This controller, which computes the best control input by considering the solution of a constrained saddle point optimization problem, is called saddle point model predictive controller (SPMPC). Using this controller, it is proved that the closed-loop is Ultimately Bounded and, with some assumptions on the problem structure, Input-to State practically Stable. Then, we are interested in numerically solving the corresponding control problem. To do so, we propose an algorithm inspired from the augmented Lagrangian technique and which makes use of adjoint model.In a second part, we consider the application of this controller to the problem of artificial blood glucose control. After a modeling phase, two models are retained. A simple one will be used to design the controller and a complex one will be used to simulate realistic virtual patients. This latter is needed to validate our control approach. In order to compute a good control input, the SPMPC controller needs the full state value. However, the sensors can only provide the value of blood glucose. That is why the design of an adequate observer is envisaged. Then, numerical simulations are performed. The results show the interest of the approach. For all virtual patients, no hypoglycemia event occurs and the time spent in hyperglycemia is too short to induce damageable consequences. Finally, the interest of extending the SPMPC approach to consider the control of time delay systems in a sampled-data framework is numerically explored.

Page generated in 0.0722 seconds