• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tobacco Methyl Salicylate Esterase Mediates Nonhost Resistance

Chigurupati, Pavan, Haq, Imdadul, Kumar, Dhirendra 01 October 2016 (has links)
Nonhost resistance is a type of broad-spectrum resistance exhibited by a given plant species to most strains of a pathogen which are generally pathogenic to other plant species. In this study, we have examined the role of tobacco SABP2 (Salicylic acid-Binding Protein 2) in nonhost resistance. SABP2, a methyl salicylate esterase is a critical component of SA-signaling pathway in tobacco plants. The transgenic tobacco SABP2-silenced lines treated with tetraFA, a known inhibitor of esterase activity of SABP2 exhibited enhanced susceptibility to nonhost pathogen, Pseudomonas syringae pv. phaseolicola compared to the control plants. The increased accumulation of SABP2 transcripts upon Psp infection supports the involvement of SABP2 in nonhost resistance. The tetra-FA treated plants also showed delayed expression of pathogenesis related-1 gene upon Psp inoculations. The expression of nonhost marker genes CDM1 and HIN1 was also monitored in tobacco plants infected with host-pathogen P.s. pv. tabaci and P.s. pv. phaseolicola. Overall, results presented in this manuscript suggest that SABP2 has a role in nonhost resistance in tobacco plants.
2

Identification of Likely Orthologs of Tobacco Salicylic Acid-Binding Protein 2 and Their Role in Systemic Acquired Resistance in Arabidopsis Thaliana

Vlot, Anna, Liu, Po Pu, Cameron, Robin K., Park, Sang Wook, Yang, Yue, Kumar, Dhirendra, Zhou, Fasong, Padukkavidana, Thihan, Gustafsson, Claes, Pichersky, Eran, Klessig, Daniel F. 01 November 2008 (has links)
Salicylic acid-binding protein 2 (SABP2) is essential for the establishment of systemic acquired resistance (SAR) in tobacco; SABP2's methyl salicylate (MeSA) esterase activity is required in healthy systemic tissues of infected plants to release the active defense phytohormone SA from MeSA, which serves as a long-distance signal for SAR. In the current study, we characterize a new gene family from Arabidopsis thaliana encoding 18 potentially active α/β fold hydrolases that share 32-57% identity with SABP2. Of 14 recombinant AtMES (MES for methyl esterase) proteins tested, five showed preference for MeSA as a substrate and displayed SA inhibition of MeSA esterase activity in vitro (AtMES1, -2, -4, -7, and -9). The two genes encoding MeSA esterases with the greatest activity, AtMES1 and -9, as well as AtMES7 were transcriptionally upregulated during infection of Arabidopsis with avirulent Pseudomonas syringae. In addition, conditional expression of AtMES1, -7, or -9 complemented SAR deficiency in SABP2-silenced tobacco, suggesting that these three members of the AtMES family are SABP2 functional homologs (orthologs). Underexpression by knockout mutation and/or RNAi-mediated silencing of multiple AtMES genes, including AtMES1, -2, -7, and -9, compromised SAR in Arabidopsis and correlated with enhanced accumulation of MeSA in the systemic tissue of SAR-induced plants. Together, the data show that several members of the AtMES gene family are functionally homologous to SABP2 and redundant for MeSA hydrolysis and probably SAR. These data suggest that MeSA is a conserved SAR signal in Arabidopsis and tobacco.
3

Biochemical Characterization of SBIP-470 and its role in SA-mediated Signaling in Plants

Chapagai, Danda P 01 December 2014 (has links)
Salicylic acid binding protein 2 (SABP2) is known to play a key role in Salicylic acid mediated defense pathway. SBIP-470 is SABP2 interacting protein that might be putatively involved in transfer of lipids. SBIP-470 was cloned without the signal peptide and expressed in E. coli. In vitro lipid binding assay using recombinant SBIP-470 failed to detect lipid binding. In vitro lipid transfer assay showed recombinant SBIP-470 does not transfer phospholipid. Study has shown that SBIP-470 is highly inducible upon infection with viral as well as bacterial pathogens. Induction of SBIP-470 expression upon the TMV infection most likely depends upon the SABP2 while its expression upon non-host bacterial pathogens is most probably inhibited by the SABP2. A study of Arabidopsis knockout mutants (ltp12 mutant and ltp2 mutant) lacking the SBIP-470 homolog genes showed defects in growth phenotype, and they were found susceptible to bacterial pathogens.
4

SABP2, a Methyl Salicylate Esterase Is Required for the Systemic Acquired Resistance Induced by Acibenzolar-S-methyl in Plants

Tripathi, Diwaker, Jiang, Yu L., Kumar, Dhirendra 01 August 2010 (has links)
Tobacco SABP2, a 29. kDa protein catalyzes the conversion of methyl salicylic acid (MeSA) into salicylic acid (SA) to induce SAR. Pretreatment of plants with acibenzolar-. S-methyl (ASM), a functional analog of salicylic acid induces systemic acquired resistance (SAR). Data presented in this paper suggest that SABP2 catalyzes the conversion of ASM into acibenzolar to induce SAR. Transgenic SABP2-silenced tobacco plants when treated with ASM, fail to express PR-1 proteins and do not induce robust SAR expression. When treated with acibenzolar, full SAR is induced in SABP2-silenced plants. These results show that functional SABP2 is required for ASM-mediated induction of resistance.
5

Effect of Pesticides on Salicylic Acid Binding Protein 2 (SABP2) and Plant Defense

Yuh, Joannes Petrus 01 December 2011 (has links) (PDF)
Tobacco SABP2 has been shown to display high affinity for salicylic acid (SA) and methylsalicylate (MeSA) and plays an important role in SAR signal development. Using biochemical approach, SABP2 has been shown to demonstrate strong esterase activity in converting MeSA to SA. Recent study shows that tetra fluoroacetophenone, a synthetic analog of SA, competitively inhibits SABP2 esterase activity as well as suppresses SAR signal development in tobacco mosaic virus (TMV)-infected tobacco plants. Not much has been studied on the effect of pesticides on plant defenses. Because both AChE and SABP2 are esterase-like proteins belonging to α/β hydroxylase superfamily, we hypothesize that pesticides may inhibit the MeSA esterase activity of SABP2 and block SAR development. Biochemical and molecular biology techniques were used to test this hypothesis. SAR in tobacco-TMV plant-pathogen system is measured by significant decrease in TMV-induced lesion sizes in secondarily inoculated distal leaves.
6

Subcellular Localization of Tobacco Salicylic Acid Binding Protein 2 in Plants.

Fai, Leonard Yenwong 07 May 2011 (has links) (PDF)
Salicylic Acid Binding Protein 2 (SABP2) is a 29kDa protein present in extremely low amounts in tobacco leaves. SABP2 processes the mobile defense signal, methyl salicylic acid generated in plants resisting microbial infection. The precise localization of SABP2 in plants is not known. SABP2 has not been shown to have any targeting signal peptides. This study was designed to determine localization of SABP2 in tobacco plants. Biochemical and immunological studies using antibodies against SABP2 suggest that it is localized to the chloroplast, associating with chloroplast envelope membranes. Chloroplast import assays confirm that SABP2 is associated with the chloroplast envelope membrane. Solubilization and analysis of chloroplast membrane proteins show that imported SABP2 associates with the chloroplast envelope membrane by weak hydrophobic and/or ionic interactions. Cellular localization and understanding mechanisms of SABP2 import to the chloroplast will be important from a metabolic engineering standpoint to enhance plant natural defense against microbial pathogens.
7

Does SABP2 Exist As a Dimer?

Hossain, Mir Ashad 01 August 2011 (has links) (PDF)
Salicylic acid binding protein 2 (SABP2) is one of the key enzymes in salicylic acid-dependent plant defense pathway. SABP2 is a 29 kDa protein present in extremely low abundance in plants and it catalyzes the conversion of signaling molecule methyl salicylate into salicylic acid. Although it has been shown that 6x His-tagged SABP2 over expressed in E. coli is a homodimer, its exact conformation in planta is still unknown. Therefore, we proposed to determine if SABP2 exist as a dimer and/or monomer under natural condition. To verify the exact conformation of native SABP2 protein in plant, SABP2 was purified from wild type tobacco using a 5-step purification protocol. Analysis of purified SABP2 in gel filtration and immunoblot assay suggested that SABP2 exists as a monomer in tobacco plant. Studies on SABP2 conformation will give us insight into the structure and functional relationship of this protein in salicylic acid-dependent disease resistance pathway.
8

SIP-428, a SIR2 Deacetylase Enzyme and Its Role in Biotic Stress Signaling Pathway

Thakuri, Bal Krishna Chand 01 December 2018 (has links) (PDF)
SABP2 (Salicylic Acid Binding Protein 2) plays a vital role in the salicylic acid signaling pathway of plants both regarding basal resistance and systemic acquired resistance against pathogen infection. SIP-428 (SABP2 Interacting Protein-428) is a Silent information regulator 2 (SIR2) like deacetylase enzyme that physically interacts with SABP2 in a yeast two-hybrid interaction and confirmed independently by a GST pull-down assay. We demonstrated that SIP- 428 is an NAD+ dependent SIR2 deacetylase enzyme. Transgenic tobacco plants silenced in SIP- 428 expression via RNAi showed enhanced basal resistance to microbial pathogens. Moreover, these SIP-428-silenced lines also exhibited a robust induction of systemic acquired resistance. In contrast, the transgenic tobacco lines overexpressing SIP-428 showed compromised basal resistance and failed to induce systemic acquired resistance. These results indicate that SIP-428 is likely a negative regulator of SA-mediated plant immunity. Experiments using a SABP2 inhibitor showed that SIP-428 likely functions upstream of SABP2 in the salicylic acid signaling pathway. It also indicates that SABP2 is dependent on SIP-428 for its role in the SA signaling pathway. Subcellular localization studies using confocal microscopy and subcellular fractionation showed that SIP-428 localized in the mitochondria. These results clearly show a role for SIP-428 in plant immunity.

Page generated in 0.079 seconds