• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on Molten Salt Fuels: Properties, Purification, and Materials Degradation

Park, Jaewoo 12 April 2024 (has links)
The molten salt reactor (MSR) is one of the advanced nuclear reactors expected to be alternatives to the conventional water-cooled nuclear reactor systems. Despite many advantages of MSRs, properties of molten salts have not been sufficiently measured in previous studies. In addition, the corrosion of structural alloys by molten salt is the biggest challenge for the operation of MSRs. This study focuses on measurements of thermophysical and thermodynamic properties of fluoride salt fuels, salt purification, and the degradation of structural materials in static and flowing molten-salt fuels. For the measurements of properties, phase transition, specific heat capacity, vapor pressure, contact angle on nuclear-grade graphite, and density were measured. The methodologies for the property measurements used in this study were validated by measuring the properties of metals or salts that have been well studied. For the flow-induced corrosion tests, the salt flow with different velocities was simulated by rotating the stainless steel 316H (SS316H) specimens in molten NaF-KF-UF4 (FUNaK) contained in glassy carbon crucibles at 1073 K. Salt samples were intermittently collected to monitor concentration changes of corrosion products in the salt, and surfaces and cross-sections of post-test SS316H specimens were analyzed to study their corrosion behaviors. Different batches of FUNaK were synthesized using different methods of purification, such as thermal purification, U-metal purification, and hydrofluorination with electrochemical purification (chemical purification) to study impacts of salt purification on the corrosion of SS316H. The corrosion test of SS316H by thermally purified FUNaK showed that the Fe concentration increased at the beginning and then decreased while the Cr concentration continued increasing while the rate decreased. In addition, (Cr, Fe)7C3 layers, Cr-metal particles, and dendritic structures concentrated with Cr and Fe were observed on the glassy carbon crucible after the 2 m/s test. The U-metal purification and hydrofluorination with electrochemical purification reduced concentrations of oxygen and hydrogen in FUNaK and mitigated the corrosion of SS316H significantly. The infiltration of the fluoride fuel salts into graphite and the fluorination of graphite by the salts at different pressures and temperatures were also studied. The salt infiltration into graphite at pressures above its threshold pressure was observed, and the formation of carbon fluorides on the surface of post-test graphite specimens was identified. / Doctor of Philosophy / As conventional water-cooled nuclear power systems showed safety issues, the Generation IV International Forum was established to expedite the development of next-generation nuclear reactor systems. Among the six advanced nuclear reactors, the molten salt reactor (MSR) stands out for its remarkable technical advantages, including low operating pressures and increased efficiency resulting from higher operating temperatures compared to water-cooled nuclear systems. Despite their advantages, further studies need to be conducted to develop and operate MSRs, as properties of molten salts have not been comprehensively measured in previous studies, and the corrosion of structural materials by molten salt is a significant challenge to their operation. The corrosion of alloys by molten salt can be attributed to many different factors, and the level of impurities in salt is an important factor directly linked to corrosion. Thus, the purification of salt is imperative to mitigate the corrosion of MSRs and needs to be well studied. In this study, methodologies for measuring thermophysical and thermodynamic properties of fluoride fuel salts were developed and validated using reference data. In addition, the corrosion of stainless steel 316H (SS316H) in a flowing fuel salt was also studied. Although various corrosion tests with static molten salts have been conducted, studies on corrosion of alloys in flowing molten salt fuels containing uranium fluorides are still limited. This study addresses this gap by developing a test apparatus equipped with a rotating disk to simulate the flow of molten salt on the surface of alloy specimens. Different batches of fuel salts with varying impurity levels, especially oxygen and hydrogen, were prepared using different purification methods. These salts were then used for corrosion tests under the same conditions, such as temperature and time duration, to explore the impacts of the non-metallic impurities on the corrosion of SS316H. The findings revealed that the salts with lower levels of oxygen and hydrogen caused less corrosion of SS316H, underscoring that the purification of salt is indispensable to the mitigation of corrosion in MSRs. This study also explored interactions of molten-salt fuels with graphite which is a promising candidate for a moderator or reflector of MSRs for enhancing neutron economy for thermal nuclear reactors. A high-pressure graphite-infiltration test apparatus was developed to investigate infiltration of fluoride fuel salts into graphite and the fluorination of graphite.
2

Material Degradation Studies in Molten Halide Salts

Dsouza, Brendan Harry 16 April 2021 (has links)
This study focused on molten salt purification processes to effectively reduce or eliminate the corrosive contaminants without altering the salt's chemistry and properties. The impurity-driven corrosion behavior of HAYNES® 230® alloy in the molten KCl-MgCl2-NaCl salt was studied at 800 ºC for 100 hours with different salt purity conditions. The H230 alloy exhibited better corrosion resistance in the salt with lower concentration of impurities. Furthermore, it was also found that the contaminants along with salt's own vaporization at high temperatures severely corroded even the non-wetted surface of the alloy. The presence of Mg in its metal form in the salt resulted in an even higher mass-loss possibly due to Mg-Ni interaction. The study also investigated the corrosion characteristics of several nickel and ferrous-based alloys in the molten KCl-MgCl2-NaCl salt. The average mass-loss was in the increasing order of C276 < SS316L < 709-RBB* < IN718 < H230 < 709-RBB < 709-4B2. The corrosion process was driven by the outward diffusion of chromium. However, other factors such as the microstructure of the alloy i.e. its manufacturing, refining, and heat-treatment processes have also shown to influence the corrosion process. Lowering the Cr content and introducing W and Mo in the alloy increased its resistance to corrosion but their non-uniform distribution in the alloy restricted its usefulness. To slow-down the corrosion process, and enhance the material properties, selected alloys were boronized and tested for their compatibility in the molten KCl-MgCl2-NaCl salt. The borided alloys exhibited better resistance to molten salt attack, where the boride layer in the exposed alloy was still intact, non-porous, and strongly adhered to the substrate. The alloys also did not show any compensation in their properties (hardness). It was also found that the boride layer always composed of an outermost silicide composite layer, which is also the weakest and undesired layer as it easily cracks, breaks, or depletes under mechanical and thermal stresses. Various different grades of "virgin" nuclear graphites were also tested in the molten KF-UF4-NaF salt to assist in the selection of tolerable or impermeable graphites for the MSR operational purposes. It was found that molten salt wettability with graphite was poor but it still infiltrated at higher pressure. Additionally, the infiltration also depended on the pore-size and porosity of the graphite. The graphite also showed severe degradation or disintegration of its structure because of induced stresses. / Doctor of Philosophy / Molten salts are considered as potential fuel and coolant candidates in MSRs because of their desirable thermophysical properties and heat-transfer capabilities. However, they pose grave challenges in material selection due to their corrosive nature, which is attributed to the impurities and their concentration (mostly moisture and oxygen-based) in the salt. This study focused on purifying the salt to reduce these contaminants without compromising its composition and properties. The influence of purification processes on the corrosion behavior of HAYNES® 230® alloy was studied in the molten chloride salt with different purity conditions. Various nickel and ferrous-based alloys were also studied for their compatibility in the molten chloride salt. This will assist in expediting the material selection process for various molten salt applications. It was observed that several factors such as alloy composition, its microstructure, impurities in the salt attribute to molten salt corrosion. It was also quite evident that corrosion in molten salts is inevitable and hence, the focus was shifted on slowing down this process by providing protective barriers in the form of coatings (i.e. boronization). The borided (coated) alloys not only improved the corrosion resistance but also enhanced and retained their properties like hardness after exposure to molten salts. Since these studies were conducted under static conditions, a more detailed investigation is needed for the selected alloys by subjecting them to extreme flow-conditions and for longer a duration of time. To achieve this objective, a forced circulation molten salt loop was designed and fabricated to conduct flow corrosion studies for alloys in molten chloride salt. Graphite is another critical component of the MSR where it is used as a moderator or reflector. Generally, molten salts exhibit poor wettability with graphite, but they can still infiltrate (graphites) at higher applied pressures, and result in the degradation or disintegration of graphite's structure, and eventually its failure in the reactor. This study provides infiltration data, and understanding of the degradation of various 'virgin' nuclear graphite grades by the molten fluoride salt. This should assist in the selection of tolerable or impermeable graphite grades for MSR operational purposes.

Page generated in 0.1297 seconds