1 |
Regulation of V-ATPase gene expression by ionic stress in higher plantsTsiantis, Miltiades S. January 1996 (has links)
No description available.
|
2 |
TsDHN-2, a unique dehydrin protein from <i>Thellungiella</i> and its role in salt toleranceKlatt, Sarah Catherine 23 August 2011
Salt stress, or salinity, is one of the most common environmental stresses affecting crop yield worldwide. Due to the prevalence of salinity stress, it is not surprising that plants have evolved mechanisms to tolerate osmotic and ionic stress caused by salinity. Dehydrins are intrinsically unstructured proteins that accumulate in photosynthetic organisms under dehydrating conditions, such as salinity, and are thought to confer stress tolerance through the stabilization of cellular membranes. <i>Thellungiella salsuginea</i>, a close relative of <i>Arabidopsis thaliana</i>, is a halophyte that thrives in the Canadian sub-Arctic (Yukon Territory), that is able to tolerate extreme conditions, including high salinity. TsDHN-2 is a basic dehydrin from <i>Thellungiella</i> whose transcript increases over 10-fold in response to salinity treatment. Using RNA interference (RNAi) methodology, TsDHN-2 has been silenced and these lines were used in this study to investigate the role TsDHN-2 may play in the salt tolerance of <i>Thellungiella</i>. RNAi line 7-8 presented a 41% reduced expression of TsDHN-2 in comparison to wild-type (WT). Seed of this line showed a 15% germination rate compared to 40% in WT in the presence of 100 mM NaCl. Salinity stress experiments were performed by treating the RNAi lines and WT plants with 300 mM NaCl for up to two weeks. Line 7-8 exhibited a 6.2% greater decrease in photochemical efficiency of photosystem II (PSII) as estimated by the variable to maximal fluorescence ratio (F<sub>v</sub>/F<sub>m</sub>) and showed 5% greater phenotypic damage than WT when estimated visually. Concentrations of the compatible osmolyte proline increased in response to salt treatment by 3.4-fold in WT and 8.1-fold in line 7-8, suggesting this compound may be a marker for salinity tolerance. Collectively, these data support the notion that TsDHN-2 plays a role in the salinity tolerance mechanisms of <i>Thellungiella</i>.
|
3 |
TsDHN-2, a unique dehydrin protein from <i>Thellungiella</i> and its role in salt toleranceKlatt, Sarah Catherine 23 August 2011 (has links)
Salt stress, or salinity, is one of the most common environmental stresses affecting crop yield worldwide. Due to the prevalence of salinity stress, it is not surprising that plants have evolved mechanisms to tolerate osmotic and ionic stress caused by salinity. Dehydrins are intrinsically unstructured proteins that accumulate in photosynthetic organisms under dehydrating conditions, such as salinity, and are thought to confer stress tolerance through the stabilization of cellular membranes. <i>Thellungiella salsuginea</i>, a close relative of <i>Arabidopsis thaliana</i>, is a halophyte that thrives in the Canadian sub-Arctic (Yukon Territory), that is able to tolerate extreme conditions, including high salinity. TsDHN-2 is a basic dehydrin from <i>Thellungiella</i> whose transcript increases over 10-fold in response to salinity treatment. Using RNA interference (RNAi) methodology, TsDHN-2 has been silenced and these lines were used in this study to investigate the role TsDHN-2 may play in the salt tolerance of <i>Thellungiella</i>. RNAi line 7-8 presented a 41% reduced expression of TsDHN-2 in comparison to wild-type (WT). Seed of this line showed a 15% germination rate compared to 40% in WT in the presence of 100 mM NaCl. Salinity stress experiments were performed by treating the RNAi lines and WT plants with 300 mM NaCl for up to two weeks. Line 7-8 exhibited a 6.2% greater decrease in photochemical efficiency of photosystem II (PSII) as estimated by the variable to maximal fluorescence ratio (F<sub>v</sub>/F<sub>m</sub>) and showed 5% greater phenotypic damage than WT when estimated visually. Concentrations of the compatible osmolyte proline increased in response to salt treatment by 3.4-fold in WT and 8.1-fold in line 7-8, suggesting this compound may be a marker for salinity tolerance. Collectively, these data support the notion that TsDHN-2 plays a role in the salinity tolerance mechanisms of <i>Thellungiella</i>.
|
4 |
Physiological and molecular mechanisms of salt tolerance in barley (Hordeum vulgare L.)Wei, Wenxue January 2002 (has links)
No description available.
|
5 |
Isolation and Characterization of a new thermotolerant pigment- producing microalga: Salt stress enhances pigment and oil biosynthesis in Coelastrella sp.F50Hu, Che-Wei 22 August 2012 (has links)
A new species of reddish-orange pigment-producing microalga was isolated from a shallow pond in tropical Taiwan. Morphological and molecular evidence including meridional ribs on the cell wall, pigment production, and 18S rDNA sequence analysis suggest that this microalga is a species in the genus Coelastrella. Salt stress accelerated biosynthesis of the reddish-orange pigments, and large quantity of oil accumulated as the cells stressed under nutrient deficiency. This microalga could
sustain 45 ¢XC for more than 8 hours indicated by the stability of its chlorophylls, which is a necessary trait for large scale outdoor cultivation using photobioreactors in tropical areas. The reddish-orange pigments could be separated into many fractions by HPLC, and signals from carotenoids were detected in a few fractions using NMR, suggesting these pigments may function as antioxidants among other roles.
|
6 |
Identification of Proteins Involved in Salinity Tolerance in Salicornia bigeloviiSalazar Moya, Octavio Ruben 11 1900 (has links)
With a global growing demand in food production, agricultural output must increase accordingly. An increased use of saline soils and brackish water would contribute to the required increase in world food production. Abiotic stresses, such as salinity and drought, are also major limiters of crop growth globally - most crops are relatively salt sensitive and are significantly affected when exposed to salt in the range of 50 to 200 mM NaCl. Genomic resources from plants that naturally thrive in highly saline environments have the potential to be valuable in the generation of salt tolerant crops; however, these resources have been largely unexplored.
Salicornia bigelovii is a plant native to Mexico and the United States that grows in salt marshes and coastal regions. It can thrive in environments with salt concentrations higher than seawater. In contrast to most crops, S. bigelovii is able to accumulate very high concentrations (in the order of 1.5 M) of Na+ and Cl- in its photosynthetically active succulent shoots. Part of this tolerance is likely to include the storage of Na+ in the vacuoles of the shoots, making S. bigelovii a good model for understanding mechanisms of Na+ compartmentalization in the vacuoles and a good resource for gene discovery.
In this research project, phenotypic, genomic, transcriptomic, and proteomic approaches have been used for the identification of candidate genes involved in salinity tolerance in S. bigelovii. The genomes and transcriptomes of three Salicornia species have been sequenced. This information has been used to support the characterization of the salt-induced transcriptome of S. bigelovii shoots and the salt-induced proteome of various organellar membrane enriched fractions from S. bigelovii shoots, which led to the creation of organellar membrane proteomes. Yeast spot assays at different salt concentrations revealed several proteins increasing or decreasing yeast salt tolerance. This work aims to create the basis for Salicornia research by providing a genome, transcriptomes, and organellar proteomes, contributing to salinity tolerance research overall. We identified a set of candidate genes for salinity tolerance with the aim of shedding some light on the mechanisms by which this plant thrives in highly saline environments.
|
7 |
Role of S-nitrosylation in plant salt stressFancy, Nurun Nahar January 2017 (has links)
Salinity stress is one of the main challenges for crop growth and production. The estimated loss of crop yield due to salinity stress is up to 20% worldwide each year. Plants have evolved an array of mechanisms to defend themselves against salinity stress. A key aspect of plant responses to salinity stress is the engagement of a nitrosative burst that results in nitric oxide (NO) accumulation. A major mechanism for the transfer of NO bioactivity is S-nitrosylation which is a modification of the reactive thiol group of a rare but highly active cysteine residue within a protein through the addition of a NO moiety to generate an S-nitrosothiol (SNO). S-nitrosylation can result in altered structure, function and cellular localisation of a protein. Our findings suggest that S-nitrosylation is a key regulator of plant responses to salinity stress. Glutathione (GSH), a tripeptide cellular antioxidant, is S-nitrosylated to form S-nitrosoglutathione (GSNO), which functions as a stable store of NO bioactivity. Cellular GSNO levels are directly controlled by S-nitrosoglutathione reductase (GSNOR), thereby, regulating global SNO levels indirectly. The absence of this gene results in high levels of SNOs. In Arabidopsis, previous research has shown that loss-of-function mutation in GSNOR1 results in pathogen susceptibility (Feechan et al., 2005). In our study, we investigated salt tolerance in gsnor1-3 plants. We have found that this line is salt sensitive at various stages of their life cycle. Interestingly, classical salt stress signalling pathways are fully functional in gsnor1-3 plants. We have also explored non-classical pathways involved in salt tolerance. Autophagy is a cellular catabolic process which is involved in the recycling and degradation of unwanted cellular materials under stressed and non-stressed conditions. We have demonstrated that gsnor1-3 plants have impaired autophagy during salt stress. An accumulation of the autophagy marker NBR1 supports the lack of autophagosome formation. We hypothesised that S-nitrosylation might regulate upstream nodes of autophagosome formation. Our study demonstrated that at least one key player involved in autophagosome biogenesis is regulated by S-nitrosylation. ATG7, an E1-like activating enzyme, which regulates ATG8-PE and ATG12-ATG5 ubiquitin like conjugation systems, is S-nitrosylated in vitro and in vivo. S-nitrosylation of ATG7 impairs its function in vitro. We showed that S-nitrosylation of ATG7 is mediated by GSNO. Interestingly, ATG7 is also transnitrosylated by thioredoxin (TRX), another important redox regulatory enzyme. We suggest that similar mechanisms might exist in planta. Finally, work in this study revealed that S-nitrosylation of Cys558 and Cys637 cause the inhibition of ATG7 function. In aggregate, this study revealed a novel mechanism for the redox-based regulation of autophagy during salt stress.
|
8 |
Effect of Silicon on Wheat Growth and Development in Drought and Salinity StressTibbitts, Spencer A. 01 May 2018 (has links)
Silicon is a major component of most soils, and is found in significant concentration in plant tissue. Plants vary widely in the amount of silicon they take up, with some plants excluding it, and others using transporters to move the silicon from the soil into their roots. Early plant physiology studies were unable to determine conclusively whether silicon was essential to plant growth, but for some plants, most notably rice, it has proved to be important enough to justify fertilizing silicon deficient fields.
Researchers at the USU Crop Physiology Lab tested the effect of silicon on wheat growth and seed yield components. One study was grown in buckets of peat moss, with half the buckets being stressed with low water. The other study was grown in hydroponic tubs, with half the tubs being stressed with high levels of salt.
The results from these studies showed that silicon does increase wheat seed yield and vegetative mass. Wheat with low levels of silicon exhibited twisting of the awns and decreased roughness of leaf surfaces. Silicon also improved water efficiency of drought stressed plants, and affected the concentration of many micro- and macro-nutrients in leaf tissue.
|
9 |
Characterization of a sweet potato calmodulin that participates in ethephon and salt stress-mediated leafLin, Zhe-Wei 18 November 2011 (has links)
Ethylene is a gaseous growth regulator, and plays an important role in response to plant developmental and environmental stimuli. Ethylene also plays a key role in leaf senescence. Calcium is a second message, and participates in the signal transduction pathways of many plant physiological responses. In this research, ethephon, an ethylene-releasing compound, was used to induce sweet potato leaf yellowing, chlorophyll content reduction, photochemical Fv/Fm decrease, H2O2 elevation and senescence-associated gene expression. These ethephon-mediated effects were all delayed or repressed by pretreatment of a calcium ion chelator, EGTA. Treatment with a calcium ionophore A23187 also induced senescence-associated gene expression in sweet potato detached leaves, and the induction was repressed by EGTA pretreatment. Calcium signaling in general is transmitted by calcium sensor proteins, including calmodulin to translate into appropriate responses to developmental and environmental stimuli. Therefore, pretreatment with calmodulin inhibitor chlorpromazine (CPZ) delayed or repressed ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. These CPZ-mediated effects were reversed by the exogenous application of an ethephon-inducible calmodulin SPCAM fusion protein. These results suggest that external Ca2+ influx and calmodulin SPCAM play a role in ethephon signaling leading to leaf senescence, H2O2 elevation and senescence-associated gene expression. In addition, NaCl salt stress also caused sweet potato leaf senescence, H2O2 elevation and senescence-associated gene expression. Pretreatment with CPZ delayed or repressed NaCl salt stress-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. These CPZ-mediated effects were also reversed by the exogenous application of calmodulin SPCAM fusion protein. These results suggest that calmodulin SPCAM may play a role in NaCl salt stress signaling leading to leaf senescence, H2O2 elevation and senescence-associated gene expression. Based on these results, external Ca2+ influx is required for ethephon induced leaf senescence. Ethephon-inducible calmodulin SPCAM likely participates in ethylene and NaCl salt stress signaling leading to leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato in order to cope with different developmental cues or environmental stimuli.
|
10 |
Modulation of soybean and maize antioxidant activities by Caffeic acid and nitric oxide under salt stressKlein, Ashwil Johan January 2012 (has links)
Philosophiae Doctor - PhD / This study explores the roles of exogenously applied nitric oxide, exogenously applied caffeic acid and salt stress on the antioxidant system in cereal (exemplified by maize) and legume (using soybean as an example) plants together with their influence on membrane integrity and cell death.This study investigates changes in H2O2 content, root lipid peroxidation, root cell death and antioxidant enzymatic activity in maize roots in response to exogenously applied nitric oxide (NO) and salt stress. This part of the study is based on the partially understood interaction between NO and reactive oxygen species (ROS) such as H2O2 and the role of antioxidant enzymes in plant salt stress responses. The results show that application of salt (NaCl) results in elevated levels of H2O2 and an increase in lipid peroxidation, consequently leading to increased cell death. The study also shows that by regulating the production and detoxification of ROS through modulation of antioxidant enzymatic activities, NO plays a pivotal role in maize responses to salt stress. The study argues for NO as a regulator of redox homeostasis that prevents excessive ROS accumulation during exposure of maize to salinity stress that would otherwise be deleterious to maize. This study extends the role of exogenously applied NO to improve salt stress tolerance in cereals crops (maize) further to its role in enhancing salt stress tolerance in legumes. The effect of long-term exposure of soybean to NO and salt stress on root nodule antioxidant activity was investigated to demonstrate the role of NO in salt stress tolerance. The results show that ROS scavenging antioxidative enzymes like SOD, GPX and GR are differentially regulated in response to exogenous application of NO and salt stress. It remains to be determined if the NOinduced changes in antioxidant enzyme activity under salt stress are sufficient to efficiently reduce ROS accumulation in soybean root nodules to levels close to those of unstressed soybean root nodules. Furthermore, this study investigates the effect of long-term exposure of soybean to exogenous caffeic acid (CA) and salt stress, on the basis of the established role of CA as an antioxidant and the involvement of antioxidant enzymes in plant salt stress responses. The effect of CA on soybean nodule number, biomass (determined on the basis of nodule dry weight, root dry weight and shoot dry weight), nodule NO content, and nodule cyclic guanosine monophosphate (cGMP) content in response to salt stress was investigated. Additionally, CA-induced changes in nodule ROS content, cell viability, lipid peroxidation and antioxidant enzyme activity as well as some genes that encode antioxidant enzymes were investigated in the presence or absence of salt stress. The study shows that long-term exposure of soybean to salt stress results in reduced biomass associated with accumulation of ROS, elevated levels of lipid peroxidation and elevated levels of cell death. However, exogenously applied CA reversed the negative effects of salt stress on soybean biomass, lipid peroxidation and cell death. CA reduced the salt stress-induced accumulation of ROS by mediating changes in root nodule antioxidant enzyme activity and gene expression. These CA-responsive antioxidant enzymes were found to be superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR), which contributed to the scavenging of ROS in soybean nodules under salt stress. The work reported in Chapter 2 has been published in a peer-reviewed journal [Keyster M, Klein A, Ludidi N (2012) Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide. Plant Signaling and Behavior 7: 349-360]. My contribution to the published paper was all the work that is presented in Chapter 2,whereas the rest of the work in the paper (which is not included in Chapter 2) was contributed by Dr Marshall Keyster.
|
Page generated in 0.0817 seconds