1 |
Mucin structure and mucosal transport of polyphenolsGeorgiades, Pantelis January 2014 (has links)
The rheological and structural characteristics of gastric (MUC5AC) and duodenal (MUC2) mucin solutions, the structural basis of the adherent mucus layer in the two organs, and their interactions with polyphenols, the phytochemicals which are linked with a number of health benefits, were investigated using particle tracking microrheology and scattering techniques. We used biochemically well characterised porcine mucins as models for human mucins to characterise their viscoelasticity, structure and dynamics as a function of concentration and pH. Additionally, the mesoscopic forces that mediate the integrity of the network were investigated using reducing (dithiothreitol) and chaotropic agents (guanidinium chloride and urea). Mucins in solution were found to be flexible and three distinct viscoelastic regimes were identify ed. At neutral pH, both types of mucin were found to form flexible self-assembled semi-dilute networks above a critical concentration (c*) where the viscosity scales as c 0.53+-0.08 and c 0.53 +-0.06 for MUC5AC and MUC2 respectively. Above a second critical concentration, the entanglement concentration (Ce), the peptide backbones reptate and entangle and there is a sharp increase in viscosity, c 3.92+- 0.38 for MUC5AC and c 5.1 0+-0.08 for MUC2. At low pH, both types of mucin solution undergo a sol-gel transition, forming pH-switchable gels. The addition of tea-derived polyphenols and tea extracts to the mucin solutions has revealed the strong interaction of galloylated phenolic molecules with mucins, which eventually leads to the gelation of the solution. Cross-linking of mucins by galloylated polyphenols is thus expected to have an impact on the physicochemical environment of the stomach and small intestine; the alteration of the organisation of the mucin polymer network is expected to modulate the barrier properties of the two adherent mucus layers which will affect nutrient absorption and the viscoelastic microenvironment of intestinal bacteria.
|
2 |
Interaction dystrophine-membrane : structure 3D de fragments de la dystrophine en présence de phospholipides / Dystrophin-membrane interaction : 3D structure of dystrophin fragments in the presence of phospholipidsDos Santos Morais, Raphael 27 October 2017 (has links)
La dystrophine est une grande protéine membranaire périphérique qui assure un rôle de soutien du sarcolemme permettant aux cellules musculaires de résister aux stress mécaniques engendrés lors des processus de contraction/élongation. Des mutations génétiques conduisent à sa production sous forme tronquée voire à un déficit total en protéine engendrant de sévères myopathies actuellement incurables. Concevoir des thérapies adaptées passe par une meilleure compréhension du rôle biologique de la dystrophine. Par une approche structure/fonction, notre objectif est de déterminer les bases moléculaires impliquées dans les interactions de la dystrophine avec les lipides membranaires du sarcolemme. Grâce à une approche de diffusion aux petits angles (SAXS et SANS) combinée à de la modélisation moléculaire, nous montrons dans un premier temps que les bicelles constituent un modèle expérimental particulièrement adapté aux analyses de structures de protéines qui y sont associées. Ce développement méthodologique original a été exploité dans un deuxième temps pour caractériser les modifications structurales subies par la dystrophine lorsqu’elle interagit avec les lipides. Nous montrons particulièrement que la liaison aux lipides induit l’ouverture significative de la structure en triple hélice « coiled-coil » de la répétiton 1 du domaine central, et proposons en conclusion un modèle tout atome de la protéine en présence de bicelles. Ces travaux de thèse (i) constituent un apport méthodologique significatif pour l’étude de protéines membranaires, (ii) contribuent à une meilleure compréhension du rôle biologique de la dystrophine en vue de thérapies dédiées aux patients atteints de myopathies. / Dystrophin is a large peripheral membrane protein that provides a supporting role for sarcolemma allowing muscle cells to withstand the mechanical stresses generated during contraction / elongation processes. Genetic mutations lead to dystrophin production in truncated form or even to a total deficit in the protein leading to severe myopathies currently incurable. Designing adapted therapies requires a huge knowledge of the biological role of dystrophin. Using a structure / function approach, our aim is to determine the molecular bases involved in the interactions of dystrophin with the membrane lipids of the sarcolemma. Using a small-angle scattering approach (SAXS and SANS) combined with molecular modeling, we show that bicelles constitute a versatile membrane mimic that is particularly adapted to analyze the structure of membrane proteins. This original methodological development was exploited to characterize the structural changes undergone by dystrophin upon lipid binding. We highlight in particular that the lipid binding induces a significant opening of the coiled-coil structure of the repeat 1 of the central domain and, in conclusion, we propose an all-atom model of the protein bound to a bicelle. These thesis works (i) constitute a significant methodological contribution for the study of membrane proteins, (ii) contribute to a better understanding of the biological role of dystrophin for therapies dedicated to patients with myopathies.
|
Page generated in 0.0776 seconds