Spelling suggestions: "subject:"1interaction protéines/lipides"" "subject:"3dinteraction protéines/lipides""
1 |
Etude in silico des gouttelettes lipidiques et de leur interaction avec des protéines périphériques via des hélices amphipathiques / In silico study of lipid droplet and their interaction with peripheral proteins through anphipathic helicesBacle, Amélie 29 November 2016 (has links)
Les gouttelettes lipidiques (GL) sont des organites intracellulaire qui jouent un rôle central dans le métabolisme des lipides. Elles sont également impliquées dans des maladies telles que l'obésité ou le diabète. Les GL ont une structure unique : une monocouche de phospholipides (PL) qui entoure un cœur de lipide neutre composé de triglycérides (TAG) et d'esters de cholestérol (CE). Certaines protéines sont recrutées sur les GL mais également à la surface d'autres organites, alors que d'autres protéines ciblent spécifiquement la surface des GL. Il a été montré que quelques une de ces protéines seraient sensibles à une haute tension de surface, soit une augmentation de l'aire par lipide, dans des GL reconstituées. Comment les propriétés de surface d'une GL diffèrent d'une membrane ? Comment la surface d'une GL répond à l'augmentation de la tension de surface ?Comment les protéines interagissent avec la surface des GL ? Nous avons réalisé des simulations de dynamique moléculaire atome-unifié de système tricouche qui mime la surface d'une GL afin de caractériser les propriétés de surface de cet organite. Plusieurs simulations ont été effectuées à différentes tension de surface en augmentant l'aire par lipide. Les propriétés de surface ont été caractérisées en terme de défauts de \textit{packing} (i.e. vides interfaciaux à l'interface membrane/eau). Aucune différence n'a été observé avec une bicouche à l'équilibre. Cependant, la tension de surface promeut l'insertion de lipides neutres dans la monocouche et augmente significativement les défauts de \textit{packing}. Des simulations préliminaires sur l'interaction d'une protéine modèle, la périlipine 4, qui se lie aux GLs \textit{in vivo} via une longue hélice amphipathique 11/3 ont été faites. Les premiers résultats montrent que la protéine adopte une structure plus flexible dans une interface huile/eau que dans une interface membrane/eau. Des essais de dimérisation montrent que la répartition des résidus chargés serait importante pour le processus d'oligomérisation. Pris globalement, ces résultats apportent une compréhension moléculaire quantitative sur l'effet de la tension de surface sur la monocouche de GL et des résultats préliminaires sur l'interaction protéine/GL. Notre travail constitue une première étape vers la description du comportement et de la structure des propriétés de surface des GL et peut être utile à la compréhension du ciblage protéique vers la surface de GL. / Lipid droplets (LD) are intracellular organelles that have a central role in lipid metabolism andimplication in diseases such as obesity and diabetes. LDs have a unique architecture: aphospholipid (PL) monolayer that surrounds a neutral lipid core composed of triacylglycerols (TAG)and cholesteryl esters (CE). Some proteins are recruited both to LDs and to other cellularorganelles, whereas others are targeted specifically to the surface of LDs. It has been shown thatsome of these proteins could be sensitive to a high surface tension (ST), increase in the area perlipid, in reconstituted LD. How do surface properties differ between a membrane and an LD? Howdoes the LD surface respond to an increase in ST? How do proteins interact with LDs? Weperformed united-atom molecular dynamics simulations on trilayer systems that mimic the LDsurface to investigate the surface properties of this organelle. Several simulations were performedat different ST by increasing the area per lipid. Surface properties were characterized in terms ofpacking defects (i.e interfacial voids at the membrane-water interface). No difference was observedwith a bilayer at equilibrium. However, high ST promoted the insertion of neutral lipids into themonolayer and a significant increase of packing defects. Preliminary simulations has been done oninteraction of a model protein called perilipin 4, which binds to LDs \textit{in vivo} using a long 11/3amphipathic helix. The first results show that the protein adopts a more flexible conformation on oilwaterinterface than in bilayer-water interface. Attempts of dimerisation show that the localization ofthe charged residues may be involved in the oligomerisation process. Taken together, our resultsprovide a quantitative molecular understanding of how ST affects the LD surface and preliminaryresults on protein-LD interaction. Our work constitutes a first step towards characterizing thebehavior and structure of LD surface properties and will be useful for a better understanding onhow some specific proteins are targeted to LD.
|
2 |
Interaction dystrophine-membrane : structure 3D de fragments de la dystrophine en présence de phospholipides / Dystrophin-membrane interaction : 3D structure of dystrophin fragments in the presence of phospholipidsDos Santos Morais, Raphael 27 October 2017 (has links)
La dystrophine est une grande protéine membranaire périphérique qui assure un rôle de soutien du sarcolemme permettant aux cellules musculaires de résister aux stress mécaniques engendrés lors des processus de contraction/élongation. Des mutations génétiques conduisent à sa production sous forme tronquée voire à un déficit total en protéine engendrant de sévères myopathies actuellement incurables. Concevoir des thérapies adaptées passe par une meilleure compréhension du rôle biologique de la dystrophine. Par une approche structure/fonction, notre objectif est de déterminer les bases moléculaires impliquées dans les interactions de la dystrophine avec les lipides membranaires du sarcolemme. Grâce à une approche de diffusion aux petits angles (SAXS et SANS) combinée à de la modélisation moléculaire, nous montrons dans un premier temps que les bicelles constituent un modèle expérimental particulièrement adapté aux analyses de structures de protéines qui y sont associées. Ce développement méthodologique original a été exploité dans un deuxième temps pour caractériser les modifications structurales subies par la dystrophine lorsqu’elle interagit avec les lipides. Nous montrons particulièrement que la liaison aux lipides induit l’ouverture significative de la structure en triple hélice « coiled-coil » de la répétiton 1 du domaine central, et proposons en conclusion un modèle tout atome de la protéine en présence de bicelles. Ces travaux de thèse (i) constituent un apport méthodologique significatif pour l’étude de protéines membranaires, (ii) contribuent à une meilleure compréhension du rôle biologique de la dystrophine en vue de thérapies dédiées aux patients atteints de myopathies. / Dystrophin is a large peripheral membrane protein that provides a supporting role for sarcolemma allowing muscle cells to withstand the mechanical stresses generated during contraction / elongation processes. Genetic mutations lead to dystrophin production in truncated form or even to a total deficit in the protein leading to severe myopathies currently incurable. Designing adapted therapies requires a huge knowledge of the biological role of dystrophin. Using a structure / function approach, our aim is to determine the molecular bases involved in the interactions of dystrophin with the membrane lipids of the sarcolemma. Using a small-angle scattering approach (SAXS and SANS) combined with molecular modeling, we show that bicelles constitute a versatile membrane mimic that is particularly adapted to analyze the structure of membrane proteins. This original methodological development was exploited to characterize the structural changes undergone by dystrophin upon lipid binding. We highlight in particular that the lipid binding induces a significant opening of the coiled-coil structure of the repeat 1 of the central domain and, in conclusion, we propose an all-atom model of the protein bound to a bicelle. These thesis works (i) constitute a significant methodological contribution for the study of membrane proteins, (ii) contribute to a better understanding of the biological role of dystrophin for therapies dedicated to patients with myopathies.
|
3 |
Étude de l'interaction d'une famille de protéines myristoylées, les Visinin-Like Proteins, avec des membranes biomimétiques et développement d'un nouveau modèle membranaire dédié à l'étude de l'interaction protéine / lipide / Studies of the interaction of myristoylated proteins, Visinin-Like Proteins, with biomimetic membranes and conception of a new membrane model dedicated to protein / lipid interaction studiesRebaud, Samuel 27 March 2015 (has links)
Deux membres des Visinin-Like Proteins (VILIPs), VILIP-1 et VILIP-3, ont été étudiés à l'aide de deux modèles membranaires biomimétiques, les monocouches de Langmuir couplées à la microscopie à l'angle de Brewster (BAM) et les bicouches lipidiques supportées (SLB) visualisées par microscopie à force atomique (AFM). A l'aide de ces deux modèles, nous avons pu montrer que les VILIPs, protéines N-myristoylées et possédant quatre mains-EF, ont une cinétique d'interaction membranaire qui augmente en présence de calcium, probablement dû à la présence d'un mécanisme type « switch calcium-myristoyle ». En revanche, l'utilisation de protéines mutées, non myristoylées, a révélé que la présence du groupement myristoyle n'est pas le seul facteur nécessaire pour que ces protéines interagissent avec la membrane. La présence d'une région N-terminale riche en résidus lysine permettrait à cette famille de protéines d'interagir via des interactions électrostatiques avec des membranes possédant des lipides anioniques et plus particulièrement du phosphatidylinositol-4,5-biphosphate (PIP2). La présence d'un faible pourcentage de ce phosphoinositide dans la membrane est responsable de l'accélération de la vitesse d'interaction membranaire des VILIPs, ce qui est cohérent avec leur location subcellulaire in cellulo. Enfin, un nouveau modèle membranaire de bicouches lipidiques suspendues sur des pilotis peptidiques (pep-tBLM) greffés sur une surface d'or a été ensuite développé. La méthode présentée dans ce manuscrit permet de créer des tBLM, de la composition lipidique souhaitée, en utilisant un peptide pilotis spécifiquement conçu durant cette thèse. La création de ce modèle a été suivie en temps réel par imagerie de résonance plasmonique de surface (SPRi) et caractérisé par AFM et par microscopie de fluorescence / Two members of the Visinin-Like Proteins (VILIPs) family, VILIP-1 and VILIP-3, have been studied using two biomimetic membrane models, the Langmuir monolayers coupled to the Brewster angle microscopy (BAM) and the supported lipid bilayers (SLB) visualized by atomic force microscopy (AFM). Using these two models, we have shown that VILIPs, N-myristoylated proteins with four EF-hands, have a membrane interaction kinetic that increases in the presence of calcium, probably due to the presence of a "calcium-myristoyl switch" mechanism. Tn contrast, the use of unmyristoylated proteins revealed that the presence of the myristoyl group is not the only factor necessary for the interaction of these proteins with the membrane. The presence of a N- terminal lysine-rich region allows this family of proteins to interact through electrostatic interactions with membranes containing anionic lipids and particularly the phosphatidylionisitol-4,5-biphosphate (PIP2). The presence of a small percent of phosphoinositide in the membrane is responsible for the acceleration of the binding rate of VILIPs, which is consistent with their subcellular location in cellulo. Finally, a new membrane model of peptide tethered lipid bilayers (pep-tBLM) grafted onto a gold surface was developed. The method described in this manuscript allows the formation of tBLM, containing the desired lipid composition, by using a home-designed peptide as tether. The formation is followed in real time by surface plasmon resonance imaging (SPRi) and has been characterized by AFM and fluorescence microscopy
|
Page generated in 0.1445 seconds