• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

U-Net ship detection in satellite optical imagery

Smith, Benjamin 05 October 2020 (has links)
Deep learning ship detection in satellite optical imagery suffers from false positive occurrences with clouds, landmasses, and man-made objects that interfere with correctly classifying ships. A custom U-Net is implemented to challenge this issue and aims to capture more features in order to provide a more accurate class accuracy. This model is trained with two different systematic architectures: single node architecture and a parameter server variant whose workers act as a boosting mechanism. To ex-tend this effort, a refining method of offline hard example mining aims to improve the accuracy of the trained models in both the validation and target datasets however it results in over correction and a decrease in accuracy. The single node architecture results in 92% class accuracy over the validation dataset and 68% over the target dataset. This exceeds class accuracy scores in related works which reached up to 88%. A parameter server variant results in class accuracy of 86% over the validation set and 73% over the target dataset. The custom U-Net is able to achieve acceptable and high class accuracy on a subset of training data keeping training time and cost low in cloud based solutions. / Graduate

Page generated in 0.068 seconds