31 |
Integration dermaler Fibroblasten in PLGA-ScaffoldsFriedrich, Nadja 03 January 2014 (has links) (PDF)
Die Wundheilung stellt einen physiologischen Vorgang zur Regeneration zerstörten Gewebes dar. Der reibungslose Ablauf der Heilung wird durch ein komplexes Zusammenspiel von Zellen und extrazellulären Komponenten gewährleistet. Durch vielfältige Faktoren kann dieser fein abgestimmte Prozess zum Erliegen kommen, so dass eine chronische Wundheilungsstörung resultiert. Trotz zahlreicher Behandlungsmöglichkeiten chronischer Wunden bleibt jedoch die erfolgreiche Heilung oftmals aus. Die Anwendung von biodegradierbaren Materialen (Biomaterialien) in der Wundheilung wurde in den vergangenen Jahren intensiv erforscht und teilweise erfolgreich am Patienten eingesetzt. An dem Ziel, ein Biomaterial herzustellen, welches alle funktionellen und strukturellen Fähigkeiten gesunder menschlicher Haut mit sich bringt, wird jedoch nach wie vor gearbeitet. In verschiedenen Studien konnte die gute Verträglichkeit und Biodegradierbarkeit des Biopolymers PLGA, bestehend aus Lactat und Glycolsäure, bereits gezeigt werden. In der vorliegenden Dissertation wurden dreidimensionale (3D)-Gerüste (Scaffolds) aus PLGA hinsichtlich ihrer Wechselwirkungen mit humanen dermalen Fibroblasten (Fb) untersucht. Dermale Fb leisten einen entscheidenden Beitrag zur erfolgreichen Wundheilung, da sie unter der Einwirkung diverser Wachstumsfaktoren zur Migration ins Wundgebiet sowie zur Neusynthese und Reorganisation extrazellulärer Matrix (ECM) befähigt sind. In den Untersuchungen wurden grundlegende Kenntnisse zum Verhalten der Zellen bezüglich Proliferation sowie Synthese nativer ECM in den PLGA-Scaffolds gewonnen und das Migrationsverhalten der Fb in das Biomaterial untersucht. Dabei zeigte sich, dass dermale Fb in den PLGA-Scaffolds nicht nur proliferieren sondern auch einen ausgeprägten Matrixstoffwechsel aufweisen. Sie sind in der Lage, Kollagen und Hyaluronsäure, wichtige Bestandteile der ECM, abzulagern. Zudem konnte mit Hilfe der Arbeit der Einfluss von Wachstumsfaktoren sowohl auf relevante ECM-Komponenten im 3D-Kultursystem als auch auf das Migrationsverhalten der Fb in das Biomaterial verdeutlicht werden. Aus den Ergebnissen geht hervor, dass 3D-PLGA-Scaffolds geeignete Substrate zur Kultivierung dermaler Fb darstellen. Die zukünftig geplante Weiterentwicklung und Funktionalisierung dieses Biopolymers für den Einsatz in der Wundheilung scheint somit viel versprechend.
|
32 |
Improvement of 3D printing quality for fabricating soft scaffoldsWeibin, Lin 20 August 2014 (has links)
Tissue engineering (TE) integrates methods of cells, engineering and materials to improve or replace biological functions of native tissues or organs. 3D printing technologies have been used in TE to produce different kinds of tissues. Based on review of the exiting 3D printing technologies used in TE, special requirements of fabricating soft scaffolds are identified. Soft scaffolds provide a microenvironment with biocompatibility for living cells proliferation. This research focuses on 3D printer design and printing parameters investigation for fabrication of soft scaffolds. A 3D printer is proposed for producing artificial soft scaffolds, with components of a pneumatic dispenser, a temperature controller and a multi-nozzle changing system. Relations of 3D printing parameters are investigated to improve the printing quality of soft scaffolds. It provides guidance for printing customized bio-materials with improved efficiency and quality. In the research, printing parameters are identified and classified based on existing research solutions. A deposition model is established to analyze the parameters relations. Quantitative criteria of parameters are proposed to evaluate the printing quality. A series of experiments including factors experiments and comparison tests are conducted to find effects of parameters and their interactions. A case study is conducted to verify the analytic solution of proposed models. This research confirms that the hydrogel concentration and nozzle diameters have significant effects on the filament diameter. Factor interactions are mainly embodied in between the concentration of hydrogel solutions and dispensing pressures. Besides filament diameters, the nozzle height and space also affect the printing accuracy significantly. An appropriate nozzle height is considered to be 1.4 times than the nozzle diameter, and a reasonable nozzle space is suggested from 2.0 to 2.5 times of the nozzle diameter.
|
33 |
Bioresorbable Polymer Blend Scaffold for Tissue EngineeringManandhar, Sandeep 05 1900 (has links)
Tissue engineering merges the disciplines of study like cell biology, materials science, engineering and surgery to enable growth of new living tissues on scaffolding constructed from implanted polymeric materials. One of the most important aspects of tissue engineering related to material science is design of the polymer scaffolds. The polymer scaffolds needs to have some specific mechanical strength over certain period of time. In this work bioresorbable aliphatic polymers (PCL and PLLA) were blended using extrusion and solution methods. These blends were then extruded and electrospun into fibers. The fibers were then subjected to FDA standard in vitro immersion degradation tests where its mechanical strength, water absorption, weight loss were observed during the eight weeks. The results indicate that the mechanical strength and rate of degradation can be tailored by changing the ratio of PCL and PLLA in the blend. Processing influences these parameters, with the loss of mechanical strength and rate of degradation being higher in electrospun fibers compared to those extruded. A second effort in this thesis addressed the potential separation of the scaffold from the tissue (loss of apposition) due to the differences in their low strain responses. This hypothesis that using knit with low tension will have better compliance was tested and confirmed.
|
34 |
Characterization of decellularized adipose tissue hydrogel and analysis of its regenerative potential in mouse femoral defect modelJanuary 2020 (has links)
archives@tulane.edu / Hydrogels serve as three-dimensional scaffolds whose composition can be customized to allow the attachment and proliferation of several different cell types. Decellularized tissue-derived scaffolds are considered close replicates of the tissue microenvironment. Decellularized adipose tissue (DAT) hydrogel has proven to be a useful tool for tissue engineering applications in pre-clinical models.
The first aim of the present study was to characterize the biochemical composition of DAT hydrogel. The DAT hydrogel was prepared by processing adipose tissue acquired from three female human donors, and subsequently quantitatively analyzed using liquid chromatography-mass spectrometry (LC-MS). The enriched and depleted proteins were determined in DAT hydrogel and further analyzed by gene ontology (GO) analysis. Extracellular matrix proteins were found to be enriched, while cellular proteins were depleted relative to native adipose tissue. Furthermore, GO analysis identified that the enriched proteins could affect various biological processes via the regulation of a range of cellular pathways.
The second aim was focused on the analysis of the effect of adipose-derived stromal/stem cells (ASCs) and DAT hydrogel interaction on cell morphology, proliferation, differentiation, and hydrogel microstructure. The ASCs seeded in DAT hydrogel remained viable and displayed proliferation. The adipogenic and osteogenic differentiation of ASCs seeded in DAT hydrogel was confirmed by marker gene expression and histochemical staining. Moreover, ASC attachment and differentiation altered the fibril arrangement, which indicated remodeling of the DAT hydrogel.
The third aim was to analyze the regenerative potential of DAT hydrogel in a critical-sized mouse femoral defect model. The DAT hydrogel alone, or its composites with ASCs, osteo-induced ASCs (OIASC), and hydroxyapatite were tested for the ability to mediate repair of the femoral defect. The data indicated that DAT hydrogel promoted bone regeneration alone, while the regeneration was enhanced in the presence of OIASCs and hydroxyapatite.
In summary, the current findings confirm that DAT hydrogel is a cytocompatible and bio-active scaffold, with potential utility as an off-the-shelf product for tissue engineering applications. In future, the analysis of DAT hydrogel using a wider range of donors representing different body mass index, age, gender, and ethnicity will provide a more comprehensive characterization. / 0 / Omair A. Mohiuddin
|
35 |
Synthese, Fabrikation und Charakterisierung eines faserförmigen Zellträgermaterials auf Basis von Titan-oxo-carboxo-Clustern / Synthesis, fabrication and characterization of a fibrous scaffold based on titanium-oxo-carboxo-clustersChrist, Bastian January 2019 (has links) (PDF)
In dieser Arbeit konnten ethanolische Sole aus TEOT und der metabolisierbaren α-Hydroxycarbonsäure Milchsäure (LA) in spinnfähige viskose Spinnmassen überführt werden und erstmalig über die Methode des Druckspinnens zu Mikrofasern prozessiert werden.
Die hybriden Fasern sind intrinsisch stabil. Über FTIR- und 13C-MAS-NMR-Untersuchungen konnte gezeigt werden, dass in der Faser der Koordinationsmodus von LA an Ti sowohl im mono- als auch im bidentaten Modus (Nomenklatur bezogen auf die Säureeinheit) vorliegt.
Die nähere Untersuchung des Degradationsverhaltens einer LA-Faser zeigte hauptsächlich die Freisetzung von Lactat und Ethanol innerhalb weniger Stunden. Danach kann kaum noch ein Massenverlust der Fasern nachgewiesen werden. Vermutlich ist die Degradationsgeschwindigkeit abhängig von der Sättigungskonzentration der wasserlöslichen Titanoxid-Spezies Ti(OH)4 und Ti(O)(OH)2. Die Löslichkeit dieser Verbindungen beträgt ca. 1 µmol/L. Die Freisetzung von Titanverbindungen an das Degradationsmedium konnte über ICP-Messungen und indirekt auch über NMR-Messungen der Degradationsprodukte in Lösung nachgewiesen werden. Nach ca. einer Woche in Lösung bildet sich der wasserlösliche metallorganische Komplex TiBALDH. Dieser Komplex zeigt keinen negativen Einfluss auf die Umwelt, so dass Zellkulturmedien, die in Kontakt mit den Fasermaterialien getreten sind, in Zukunft nach dem Autoklavieren gefahrlos entsorgt werden können.
Zudem sollte keines der detektierten Abbauprodukte in den abgegebenen Mengen toxisch auf den humanen Organismus bei in vivo-Anwendungen wirken. Lactat und Ethanol können im menschlichen Organismus verstoffwechselt werden. TIBALDH ist dem im menschlichen Serum nachweisbaren Titan(IV)citrat-Komplex strukturell sehr ähnlich. Aufgrund der Tatsache, dass die Bildung von TiBALDH ca. 1 Woche dauert, ist die vorherige Bildung des Titan(IV)citrat-Komplexes im humanen Organismus wahrscheinlich.
Weiterhin konnte das hybride Fasermaterial durch den Zusatz von basischen Stoffen neutralisiert werden und nach Vorkonditionierung der Fasern als nicht zytotoxisch eingestuft werden. Als Gegenionen wurde Ammonium, das biogene Amin Phenethylamin, die Aminosäure Phenylalanin und das Biopolymer CHI getestet. Für zukünftige Weiterentwicklungen können auch basische Wirkstoffe als Gegenionen herangezogen werden. Somit könnte das hybride Zellträgermaterial zusätzlich eine Drug-Delivery-Funktion erhalten.
Die LA-Fasern verhalten sich nach dem Verspinnen sehr flexibel. Bei einer Lagerung bei RT jedoch verspröden diese sehr schnell innerhalb von 3 d. Diese Materialeigenschaft wurde im zweiten Teil der Arbeit näher untersucht und optimiert.
Tempern des Fasermaterials bei 170 °C bewirkte eine Umlagerung der LA-Liganden zu AA-Liganden, aber keine Verbesserung der mechanischen Eigenschaften. Versuche einer getemperten LA-Faser mit CHI als Gegenion zeigte durchwegs positive Eigenschaften in den Zytotoxizitätstests und auf deren Oberfläche konnten Zellen der Zelllinien L929, 16HBE, HTB94 und MG63 erfolgreich kultiviert werden.
Durch die Verwendung anderer metabolisierbarer α Hydroxycarbonsäuren konnten Rückschlüsse auf die chemische Zusammensetzung der Fasern gezogen werden. Die Fasern scheinen aus wenig untereinander vernetzen Titan-oxo-carboxo-Clustern der Summenformel [Ti6O6(OR)6(Carboxylat)6] (mit R = H2+, H, Et oder „Ti6O6(OR)5(Carboxylat)6“) zu bestehen. Durch Variation der verwendeten Säuren konnten die Wechselwirkungen der Cluster untereinander verstärkt werden, so dass beispielsweise eine Faser mit MA bedeutend flexiblere Eigenschaften – auch bei einer Lagerung für 3d bei RT aufweist. Des Weiteren konnte durch Lagerung dieser Faser bei 4 °C der Versprödungsprozess für mind. 1 Monat gestoppt werden. Eine Lagerung von Medizinprodukten bei 4 °C stellt in Ländern mit ausreichender Infrastruktur kein Problem dar.
Aufbauend auf diesen Tatsachen und TGA-MS-Messungen konnte die These aufgestellt werden, dass sich zwischen den wenig untereinander vernetzten Titan-oxo-carboxo-Cluster direkt nach dem Verspinnen noch Wassermoleküle befinden. Diese Reste an Wasser verleihen – vermutlich aufgrund der Ausbildung von Wasserstoffbrückenbindungen – der Faser flexible Eigenschaften. Bei einer Lagerung bei RT entweichen diese Wasserreste und die Faser versprödet; bei einer Lagerung bei 4°C wird das Verdampfen des restlichen Wassers bedeutend verlangsamt.
Die Faser mit den flexibelsten Eigenschaften konnte letztendlich durch die Verwendung des zweizähnigen Carboxylat-Liganden MalA erhalten werden.
Zusammenfassend konnte in dieser Arbeit ein neuartiges faserförmiges Material auf Basis von Titan-oxo-carboxo-Clustern produziert werden, welches großes Potential besitzt als Zellträgermaterial Anwendung zu finden. Aufbauend auf den hier gewonnenen Ergebnissen können die mechanischen Eigenschaften weiter optimiert und die Anforderungen des gewünschten Zielgewebes feinjustiert werden. Zudem besteht die Möglichkeit dem Material Drug-Delivery-Eigenschaften zu verleihen. Somit könnte das Scaffold aus Mikrofasern neben den bereits integrierten chemischen und physikalischen Stimuli (die Oberflächenfunktionalitäten und die Oberflächentopographie der Fasern) auch durch freigesetzte Wirkstoffe Zellen zur gewünschten Differenzierung anregen. / In this thesis ethanolic sols out of the liquid sol gel precursor TEOT and metabolizable α-hydroxy carboxylic acids (e. g. LA) were transformed into spinnable viscous fluids and were processed for the first time to microfibers.
These hybrid microfibers are intrinsic stable. FTIR- and 13C-MAS-NMR-measurements of the fibers show a monodentate as well as a bidentate coordination mode (with regard to the carboxylic unit) of LA to Ti.
Degradation experiments show the release of lactate and ethanol within less hours. Afterwards no mass lost is detected anymore. The kinetics of fiber degradation might depend on the saturation concentration of the titanium oxide species Ti(OH)4 and Ti(O)(OH)2 in water. Their solubility in water is 1 µmol/L. The release of titanium containing compounds is detected indirectly by ICP- and NMR-measurements. This compound was identified as TIBALDH, which was shown having no negative impact on environment.[99, 160] Additionally the pH value of the hybrid fibers can be neutralized by adding basic compounds (ammonium, phenetylamine, phenylalanine or chitosan) to be classified as a non-cytotoxic material.
LA fibers are very flexible after spinning. After storage at RT the fibers turn into a brittle material within 3 days. This property was investigated in the second part of the thesis.
Fiber annealing at a temperature of 170 °C doesn’t result in an improvement of the mechanically properties. Nonetheless cytotoxicity assays of the annealed fibers show promising results and cell proliferation experiments show the proliferation of L929, 16HBE and HTB94 on the fibrous surface.
Conclusion of the fiber composition can be drawn by using different metabolizable α-hydroxy carboxylic acids in fiber synthesis. Fibers seem to consist out of less crosslinked titanium-oxo-carboxo-clusters of the molecular formula [Ti6O6(OR)6(carboxylate)6] (with R = H2+, H, Et or „Ti6O6(OR)5(carboxylate)6“). By varying the carboxylates the interaction of the clusters can be enhanced. For instance a fibers with the acid MA shows better flexibility – even after storage at RT for 3 days. Additionally the brittling of fibers can be stopped for at least one months by a storage temperature of 4 °C.
Referring to these results and TGA-measurements following hypothesis was put forward: Directly after fiber spinning water molecules are present in the small pores betwenn different titanium-oxo-carboxo-clusters. These water residuals reinforce fiber flexibility due to hydrogen bonds. After storing the fibers at RT residual water molecules will evaporate out of the fibers. Consequently the fibers are brittling. At a storage temperature of 4 °C the evaporation of water molecules is slowed down.
Fibers containing MalA – an α-hydroxy carboxylic acid with two coordinating carboxylic groups – were determined as the most flexible fiber.
|
36 |
Evaluation of Blood Vessel Mimic Scaffold BiocompatibilityAbraham, Nicole M 01 June 2021 (has links) (PDF)
The Tissue Engineering Research Lab at California Polytechnic State University, San Luis Obispo focuses on creating tissue-engineered blood vessel mimics (BVMs) for use in preclinical testing of vascular devices. These BVMs are composed of electrospun scaffolds made of an assortment of polymers that are seeded with different cell types. This integration of polymers with cells leads to the need for biocompatibility testing of the polymer scaffolds. Many of the lab’s newest scaffolds have not been fully characterized for biologic interactions. Therefore, the first aim of this thesis developed methods for in vitro cytotoxicity testing of polymers used in the fabrication of BVMs. This included cytotoxicity testing using direct contact and elution-based methods, along with fluorescent staining to visualize the scaffold effects on cells.
The second aim of this thesis implemented the newly developed cytotoxicity protocols to evaluate the biocompatibility of existing polymers, ePTFE and PLGA, used in the tissue engineering lab. The results demonstrated that ePTFE and PLGA were noncytotoxic to cells. The third aim of this thesis evaluated the biocompatibility of novel polymers used to fabricate BVMs: PLGA with salt, PLLA, and PCL. Elution-based methods concluded that PLGA with salt, PLLA, and PCL were noncytotoxic to cells; however, the direct contact method illustrated PLGA with salt and PCL were mildly cytotoxic at 24 and 48 hours. Potential causes of this variability include the addition of salt to PLGA, dissolving PCL in dichloromethane, inadequate sample sizing, and the inherent differences between the test methods. Overall, this thesis developed and implemented methods to evaluate the biocompatibility of polymer scaffolds used in the BVM model, and found that ePTFE, PLGA, and PLLA scaffold materials were biocompatible and could be implemented in future BVM setups without concerns. Meanwhile, PLGA with salt and PCL’s toxicity was mild enough to urge future cytotoxicity testing on PLGA with salt and PCL before further use in the lab.
|
37 |
Investigating the function of ATP hydrolysis during cluster biogenesis by the yeast cytosolic iron sulfur cluster assembly scaffoldGrossman, John David 04 February 2021 (has links)
Iron sulfur (FeS) clusters are ubiquitous metallocofactors required by a large number of proteins involved in myriad cellular processes. Nuclear and cytosolic FeS proteins depend on the cytosolic iron sulfur cluster assembly (CIA) pathway for cluster acquisition. The CIA pathway begins with a scaffolding complex, comprising Nbp35 and Cfd1 in Saccharomyces cerevisiae. Nbp35 and Cfd1 each harbor a deviant Walker A domain for nucleotide hydrolysis that is essential for their FeS cluster scaffolding activity. Since there is little information about the CIA scaffold’s nucleotide hydrolysis activity, it has been challenging to discern the role nucleotide is playing in FeS cluster biogenesis. This thesis investigates the nucleotide driven steps of FeS cluster assembly and transfer, and the individual roles of the scaffold subunits Nbp35 and Cfd1.
First addressed was answering the question of why two different scaffold subunits are needed for CIA function, and identifying the scaffold’s quaternary structure. Size exclusion chromatography revealed that the CIA scaffold exists as homodimers and heterodimers. Only Nbp352 and Nbp35-Cfd1 exhibited detectable ATPase activity. Though Cfd12 did not have detectable ATPase activity, it bound nucleotide with an affinity comparable to Nbp352 and Nbp35-Cfd1. Site directed mutagenesis and nucleotide binding studies revealed that the Cfd1 subunit is the high affinity binding site for ATP in Nbp35-Cfd1, and that the Nbp35 subunit binds nucleotide at saturating concentrations. Cfd1 therefore controls nucleotide binding in Nbp35-Cfd1. Additionally, it was found that the Cfd1 subunit is hydrolysis competent when complexed with Nbp35, identifying Nbp35 as an activator of Nbp35-Cfd1’s ATPase activity.
Next, ATP’s role in FeS cluster biogenesis by CIA was identified. Mutation of the ATPase domain of Nbp35 impaired the ability of the scaffold to assemble and transfer FeS clusters in vivo. Four phenotypes were identified by observing how each mutation affected the scaffold’s nucleotide binding and hydrolysis. In vitro experiments established that cluster occupancy of the bridging cluster site of Nbp35-Cfd1 decreased the scaffold’s affinity for nucleotide. These results support a model of FeS cluster biogenesis in which nucleotide binding and FeS cluster binding regulate one other, with the bridging cluster site translating information to the ATPase site and vice versa. Nucleotide binding is also proposed to drive a conformational change that mediates interaction with another CIA component, later identified as Dre2. Dre2 was found to stimulate the rate of ATP hydrolysis by Nbp35-Cfd1 in an FeS cluster dependent manner. It is likely that nucleotide hydrolysis is then needed for the scaffold to assemble and/or transfer the FeS cluster. The results of these experiments have allowed us to describe the critical role of nucleotide in FeS biogenesis by CIA and explain the requirement for two distinct scaffold subunits.
Finally, a fluorescent [Fe4S4] cluster sensor based on bacterial FNR (fumarate and nitrate reductase transcription factor) was designed, developed, and tested for practicality. FNR was fused to a SNAP tag protein which was then covalently labeled with a fluorescent molecule. The loss of cluster by the sensor resulted in an increase in fluorescence intensity, due to the cluster’s ability to quench fluorescence. As such, cluster decay rates could be measured as a function of increasing fluorescence intensity. The rates observed via fluorescence followed the same trends as the rates obtained by measuring the decay of clusters via absorbance. Encouragingly, the rates observed for the cluster decay were similar to decay rates determined previously via alternative methods.
|
38 |
Biomaterials for breast reconstruction: Promises, advances, and challengesAbdul-Al, Mohamed, Zaernia, Amir, Sefat, Farshid 25 August 2020 (has links)
yes / Breast reconstruction is the opportunity that provides the chance of having breast
after undergoing surgical removal of the breast tissue due to cancer-related surgery.
However, this varies on the stage of the cancer diagnosis and the procedure undertaken.
There are many regenerative medicine methods that provide several initiatives
and direct solutions to problems such as the development of “bioactive tissue,” which
can regenerate adipose tissues with similar normal functions and structures. There
have been several studies which have previously explored for the improvement of
breast reconstruction including different variations of biomaterials, different fabrication
and processing techniques, cells as well as growth factors which enable bioengineers
and tissue engineers to reconstruct a suitable breast for patients with breast
cancer. Many factors such as shape, proper volume, mechanical properties have been
studies but very scattered with not adequate solutions for existing patients worldwide.
This review article aims to cover recent advances in biomaterials, which
can be used for reconstruction of breasts as well as looking at the various factors that
might lead to individuals needing reconstruction and the materials that are available.
The focus would be to look at the various biomaterials that are available to use for
reconstruction, their properties, and their structural integrity.
|
39 |
Cortical Bone Engineering: Scaffold Design And Cell SelectionWen, Demin January 2009 (has links)
No description available.
|
40 |
Novel tissue scaffolds comprising nano- and micro-structuresNg, Robin 11 December 2007 (has links)
No description available.
|
Page generated in 0.0323 seconds