1 |
Aplicação da óptica escalar na modulação de frentes de onda e em medidas de ressonância de moduladores de ferroeletretos / Application of scalar optics in the wavefront modulation and in resonance measurements of ferroelectrets modulatorsMazulquim, Daniel Baladelli 28 February 2011 (has links)
Moduladores espaciais de luz são elementos que fazem a modulação de uma frente de onda de modo a resultar em uma distribuição de luz desejada. Eles operam por difração, de acordo com o princípio de Huygens-Fresnel, e por este motivo são chamados Elementos Ópticos Difrativos (EODs). O foco deste trabalho é o estudo da modulação de frentes de onda, através da Teoria Escalar da Difração. O objetivo inicial foi o domínio do cálculo dos moduladores espaciais de luz, através da implementação do Algoritmo Iterativo da Transformada de Fourier. São calculados três EODs de fase: fase contínua, 4 níveis de fase e fase binária. Os resultados são avaliados através do cálculo da eficiência difrativa e da relação sinal-ruído. Para verificação do cálculo, hologramas binários foram fabricados usando filme fotográfico, de maneira simples e baixo custo. Algumas reconstruções simuladas e ópticas são apresentadas, demonstrando a viabilidade do uso do algoritmo na codificação de EODs. Em seguida, é feita a análise das frequências de ressonância de moduladores de ferroeletretos com canaleta, através de uma montagem experimental baseada no interferômetro de Michelson. Os ferroeletretos apresentam o efeito piezoelétrico e vêm sendo produzidos através de novas técnicas de fabricação. No campo da óptica tem-se o interesse em caracterizar ferroeletretos de modo a utilizá-los como possíveis moduladores de luz. São apresentados a montagem interferométrica em detalhes e o procedimento usado para medir as frequências de ressonância. Os resultados obtidos e as discussões demonstram a viabilidade do uso da montagem interferométrica proposta na caracterização de ferroeletretos. / Spatial light modulators perform the modulation of wavefront so that the desired light distribution is acquired. They work by diffraction, according to the Huygens-Fresnel principie, and for that they are called Diffractive Optical Elements (DOEs). The focus of this work is the study of light modulators through Scalar Diffraction Theory. The initial objective was to execute the calculation of spatial light modulators through the implementation of the so-called Iterative Fourier Transform AIgorithm. The calculation of three phase holograms is made: analog phase, 4 leveI phase and binary phase. The results are evaluated by calculating the diffraction efficiency and by signal to noise ratio. To verify the calculation, binary holograms were fabricated using photographic film in a simple and low cost way. Simulated and optical reconstructions are presented, showing the viability for the use of the algorithm in the coding of DOEs. Next, the resonance frequencies analysis in open tubular channels ferroelectrets is made through an experimental setup based in the Michelson interferometer. The ferroelectrets present the piezoelectric effect and are continuously produced through new techniques. In optics there is in interest in feroelectrets characterization in order to use them as spatial light modulators. The interferometric setup and the procedure used to measure the resonance frequencies are shown. The obtained results and discussion demonstrate the viability of the use of optical measurements in the characterization of ferroelectrets.
|
2 |
Direct Nano-Patterning With Nano-Optic DevicesMeenashi Sundaram, Vijay 2010 May 1900 (has links)
In this study nano-patterning was carried out using two different nano-optic devices namely- the NSOM and Fresnel zone plate. In the first study, NSOM was used to generate nano-patterns on selected semiconducting (Si and Ge) and metallic (Cr, Cu and Ag) targets under different laser pulse durations, laser energies and number of laser pulses. Based on the experimental results, femtosecond laser pulses, provided lower pattern generation thresholds on targets but higher damage thresholds to the NSOM probes at the wavelength (~400-410 nm) studied, compared with nanosecond laser pulses. Three different mechanisms were identified as the dominant processes for pattern generation under different conditions, namely nano-scale laser ablation, nano-scale thermal oxidation and nano-scale melting/recrystallization of the targets. Furthermore, the resulting nano-patterns also showed a significant dependence on the optical properties (i.e., absorption coefficient and surface reflectivity) of the target material. By comparing the obtained experimental results, it was concluded that the optical energy transport from the NSOM probe to the target dominates the pattern generation when femtosecond laser is applied to the NSOM system. When nanosecond laser is applied, both the thermal and optical energy transported from the NSOM probe to the targets attribute to the obtained morphology of nano-patterns on different targets under the experimental conditions studied. In the second study, a traditional Fresnel zone plate with a focus length of 3 micrometres was fabricated with a novel lift-off process in e-beam lithography. The fabrication process involved, using a HSQ/PMMA bi-layer in a negative tone lift-off process with a layer of conducting polyaniline for charge dissipation. HSQ was used as the high resolution negative resist for e-beam patterning and the PMMA under-layer was used to enable a HSQ lift-off process. The fabricated Fresnel zone plate was used to generate nano-patterns on a UV sensitive photoresist using nanosecond laser light with lamda~409nm. The smallest pattern sizes generated was close to the diffraction limit. Nano-pattern sizes generated on the photoresist were comparable with a numerically calculated intensity distribution at the focus spot of the designed Fresnel zone plate obtained from Scalar Diffraction Theory.
|
3 |
Aplicação da óptica escalar na modulação de frentes de onda e em medidas de ressonância de moduladores de ferroeletretos / Application of scalar optics in the wavefront modulation and in resonance measurements of ferroelectrets modulatorsDaniel Baladelli Mazulquim 28 February 2011 (has links)
Moduladores espaciais de luz são elementos que fazem a modulação de uma frente de onda de modo a resultar em uma distribuição de luz desejada. Eles operam por difração, de acordo com o princípio de Huygens-Fresnel, e por este motivo são chamados Elementos Ópticos Difrativos (EODs). O foco deste trabalho é o estudo da modulação de frentes de onda, através da Teoria Escalar da Difração. O objetivo inicial foi o domínio do cálculo dos moduladores espaciais de luz, através da implementação do Algoritmo Iterativo da Transformada de Fourier. São calculados três EODs de fase: fase contínua, 4 níveis de fase e fase binária. Os resultados são avaliados através do cálculo da eficiência difrativa e da relação sinal-ruído. Para verificação do cálculo, hologramas binários foram fabricados usando filme fotográfico, de maneira simples e baixo custo. Algumas reconstruções simuladas e ópticas são apresentadas, demonstrando a viabilidade do uso do algoritmo na codificação de EODs. Em seguida, é feita a análise das frequências de ressonância de moduladores de ferroeletretos com canaleta, através de uma montagem experimental baseada no interferômetro de Michelson. Os ferroeletretos apresentam o efeito piezoelétrico e vêm sendo produzidos através de novas técnicas de fabricação. No campo da óptica tem-se o interesse em caracterizar ferroeletretos de modo a utilizá-los como possíveis moduladores de luz. São apresentados a montagem interferométrica em detalhes e o procedimento usado para medir as frequências de ressonância. Os resultados obtidos e as discussões demonstram a viabilidade do uso da montagem interferométrica proposta na caracterização de ferroeletretos. / Spatial light modulators perform the modulation of wavefront so that the desired light distribution is acquired. They work by diffraction, according to the Huygens-Fresnel principie, and for that they are called Diffractive Optical Elements (DOEs). The focus of this work is the study of light modulators through Scalar Diffraction Theory. The initial objective was to execute the calculation of spatial light modulators through the implementation of the so-called Iterative Fourier Transform AIgorithm. The calculation of three phase holograms is made: analog phase, 4 leveI phase and binary phase. The results are evaluated by calculating the diffraction efficiency and by signal to noise ratio. To verify the calculation, binary holograms were fabricated using photographic film in a simple and low cost way. Simulated and optical reconstructions are presented, showing the viability for the use of the algorithm in the coding of DOEs. Next, the resonance frequencies analysis in open tubular channels ferroelectrets is made through an experimental setup based in the Michelson interferometer. The ferroelectrets present the piezoelectric effect and are continuously produced through new techniques. In optics there is in interest in feroelectrets characterization in order to use them as spatial light modulators. The interferometric setup and the procedure used to measure the resonance frequencies are shown. The obtained results and discussion demonstrate the viability of the use of optical measurements in the characterization of ferroelectrets.
|
4 |
Design And Assessment Of Compact Optical Systems Towards Special Effects ImagingChaoulov, Vesselin 01 January 2005 (has links)
A main challenge in the field of special effects is to create special effects in real time in a way that the user can preview the effect before taking the actual picture or movie sequence. There are many techniques currently used to create computer-simulated special effects, however current techniques in computer graphics do not provide the option for the creation of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of special effects, it is neither portable nor does it provide work in real-time capabilities. Real-time special effects may, however, be created optically. Such approach will provide not only real-time image processing at the speed of light but also a preview option allowing the user or the artist to preview the effect on various parts of the object in order to optimize the outcome. The work presented in this dissertation was inspired by the idea of optically created special effects, such as painterly effects, encoded in images captured by photographic or motion picture cameras. As part of the presented work, compact relay optics was assessed, developed, and a working prototype was built. It was concluded that even though compact relay optics can be achieved, further push for compactness and cost-effectiveness was impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with multi-aperture micro-optics was proposed and demonstrated for the first time, which constitutes one of the key contributions of this work. This new paradigm was further extended to the most general case of magnifying multi-aperture micro-optical systems. Such paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 and a reduction in weight by a factor of about 500. Furthermore, an experimental quantification of the feasibility of optically created special effects was completed, and consequently raytracing software was developed, which was later commercialized by SmARTLens(TM). While the art forms created via raytracing were powerful, they did not predict all effects acquired experimentally. Thus, finally, as key contribution of this work, the principles of scalar diffraction theory were applied to optical imaging of extended objects under quasi-monochromatic incoherent illumination in order to provide a path to more accurately model the proposed optical imaging process for special effects obtained in the hardware. The existing theoretical framework was generalized to non-paraxial in- and out-of-focus imaging and results were obtained to verify the generalized framework. In the generalized non-paraxial framework, even the most complex linear systems, without any assumptions for shift invariance, can be modeled and analyzed.
|
Page generated in 0.1144 seconds