• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exohedral Functionalization and Applications of the Trimetallic Nitride Endohedral Metallofullerenes

Iezzi, Erick B. 24 October 2003 (has links)
This dissertation addresses the exohedral cage functionalization and potential applications of the Sc₃N@C₈₀ and Sc₃N@C₇₈ trimetallic nitride endohedral metallofullerenes. In addition, this dissertation discusses miscellaneous research that is relevant to the aformentioned metallofullerenes and their applications, such as the discovery of a new cage isomer <i>(D<sub>5h</sub>)</i> of Sc₃N@C₈₀, the synthesis of Lu₃N@C₈₀ as a novel X-ray contrasting agent, and the synthesis of Sc₃¹⁵N@C₈₀ with ¹⁵N₂ gas. The first derivative of Sc₃N@C₈₀ was synthesized by functionalizing the exterior of the cage via a [4 + 2] cycloaddition reaction with a ¹³C-labeled intermediate. Addition occurred across the [5,6] ring-juncture of the cage to form a mono-adduct, which has a mirror plane of symmetry as observed from the time-averaged ¹³C NMR spectrum. The structure of the mono-adduct was confirmed by X-ray crystallography. Diethyl and dibenzyl malonate adducts of Sc₃N@C₈₀ were synthesized, in addition to a ¹⁵N-labeled terminal amine derivative. Water-soluble metallofullerenols, Sc₃N@C₈₀(OH)<sub>~10</sub>(O)<sub>~10</sub>, were synthesized from polyanionic intermediates. The Sc₃N@C₇₈ metallofullerene was derivatized with a ¹³C-labeled reagent to afford mono-, di- and tri-adducts. A single structural isomer of the mono-adduct was found, while several isomers of the di- and tri-adducts were observed by HPLC. ¹³C and ¹H NMR data of the mono-adduct support a structure that results from addend addition to an asymmetric site on the C₇₈ carbon cage. The HPLC isolation and characterization of Lu₃N@C₈₀ is discussed. When irradiated with X-rays, Lu₃N@C₈₀ provided a small level of contrast that can only be attributed to the large atomic number (Z) of the lutetium atoms. Mixed-metal species that contains gadolinium and lutetium or holmium and lutetium could be employed as multifunctional contrasting agents for X-ray, MRI and radiopharmaceuticals, thereby eliminating the need for three separate agents. A new cage isomer of the Sc₃N@C₈₀ metallofullerene was synthesized and partially isolated by HPLC. This carbon cage possesses <i>D<sub>5h</sub></i> symmetry, as indicated by the time-averaged six line ¹³C NMR spectrum with a 1:2:2:1:1:1 ratio. The internal metal-nitride cluster of Sc₃N@C₈₀ was synthesized with a ¹⁵N-label for studying the motion(s) of the cluster (within the carbon cage) at various temperatures using ¹⁵N NMR spectroscopy. / Ph. D.
2

Chemical Reactivity and Regioselectivity of Trimetallic Nitride Endohedral Metallofullerenes

Cai, Ting 21 April 2008 (has links)
Endohedral metallofullerenes (EMF) have attracted increasing attention during past decades for their potential applications in the fields of biomedicine and nanomaterials. Trimetallic nitride template endohedral metallofullerenes (TNT EMFs) are some of the most promising fullerene-based materials (e.g., as MRI and X-ray contrast agents) because of their high yields compared to classic endohedral metallofullerenes. This dissertation addresses the chemical reactivity and regioselectivity of TNT EMFs. Based on the extraordinarily high stability of TNT EMFs relative to empty cage fullerenes and classic endohedral metallofullerenes, macroscopic quantities of high purity TNT EMFs were obtained directly from crude soot in a single facile step by using a cyclopentadiene-functionalized resin to trap the more reactive species via Diels-Alder reactions, allowing the TNT EMFs to pass through. We also developed a support-free chemical separation method of TNT EMFs from Sc- and Lu-based soot extract that makes use of the differing solubilities of unreacted TNT EMFs versus 9-methylanthracene-derivatized empty cage fullerenes. The exohedral functionalization of metallofullerenes can fine-tune their chemical and physical properties. The first N-methylpyrrolidino derivatives of TNT EMFs (Ih Sc3N@C80 and Ih Er3N@C80) were synthesized via 1,3-dipolar cycloaddition of N-methylazomethine ylides (Prato reaction). The demonstration of planar symmetry in the N-methylpyrrolidino derivatives by 13C NMR spectroscopy suggested that the reaction exclusively took place at the 5,6-ring junction. However, both 5,6-ring and 6,6 ring junction adducts were obtained when Ih Sc3N@C80 reacted with N-triphenylmethyl-5-oxazolidinone, as characterized by NMR spectroscopy and X-ray crystallography. The kinetically favored 6,6-ring junction adduct was converted to the thermodynamic product, the 5,6-ring junction adduct, upon thermal equilibration. The synthesis of pyrrolidino derivatives was also extended to two other Sc-based TNT EMFs, D5h Sc3N@C80 and Sc3N@C78. The reactivity and regioselectivity of D5h Sc3N@C80 and Sc3N@C78 were demonstrated by NMR spectroscopy, X-ray crystallography and theoretical calculations. Another type of reaction, the Bingel-Hirsch cyclopropanation was carried out with D3h Sc3N@C78 for the first time, yielding a single Cs-symmetric monoadduct and a dominant C2v-symmetric diadduct for the first time. The symmetric diadduct clearly demonstrates the remarkable regioselectivity control exerted by the encapsulated Sc3N cluster. We employed a LUMO electron density surface computational approach to predict multiadduct docking sites on the ellipsoidal fullerene cage surface. We also successfully synthesized the first derivative of a non-IPR fullerene, the diethyl malonate derivative of Sc3N@C68 by a Bingel-Hirsch reaction. The reactivity and regioselectivity of Sc3N@C68 were investigated by NMR spectroscopy and theoretical calculations. / Ph. D.
3

Synthesis of Thin Piezoelectric AlN Films in View of Sensors and Telecom Applications

Moreira, Milena De Albuquerque January 2014 (has links)
The requirements of the consumer market on high frequency devices have been more and more demanding over the last decades. Thus, a continuing enhancement of the devices’ performance is required in order to meet these demands. In a macro view, changing the design of the device can result in an improvement of its performance. In a micro view, the physical properties of the device materials have a strong influence on its final performance. In the case of high frequency devices based on piezoelectric materials, a natural way to improve their performance is through the improvement of the properties of the piezoelectric layer. The piezoelectric material studied in this work is AlN, which is an outstanding material among other piezoelectric materials due to its unique combination of material properties. This thesis presents results from experimental studies on the synthesis of AlN thin films in view of telecom, microelectronic and sensor applications. The main objective of the thesis is to custom design the functional properties of AlN to best suit these for the specific application in mind. This is achieved through careful control of the crystallographic structure and texture as well as film composition. The piezoelectric properties of AlN films were enhanced by doping with Sc. Films with different Sc concentrations were fabricated and analyzed, and the coupling coefficient (kt2) was enhanced a factor of two by adding 15% of Sc to the AlN films. The enhancement of kt2 is of interest since it can contribute to a more relaxed design of high frequency devices. Further, in order to obtain better deposition control of c-axis tilted AlN films, a new experimental setup were proposed. When this novel setup was used, films with well-defined thicknesses and tilt uniformity were achieved. Films with such characteristics are very favorable to use in sensors based on electroacoustic devices operating in viscous media. Studies were also performed in order to obtain c-axis oriented AlN films deposited directly on Si substrates at reduced temperatures. The deposition technique used was HiPIMS, and the results indicated significant improvements in the film texture when comparing to the conventional Pulsed DC deposition process.

Page generated in 0.0509 seconds