Spelling suggestions: "subject:"scf""
41 |
Self-assembled DNA Nanostructures: from Structural Material to Biomedical NanodevicesLi, Hanying 08 August 2008 (has links)
<p> In addition to being the natural genetic information carrier, DNA can also serve as a versatile material for construction of nanoscale objects. By using the base-pairing properties of DNA, we have been able to mass-produce nano-scale structures in a variety of different shapes, upon which patterns of other molecules can be further specified. The diversity of molecules and materials that can be attached to DNA and the capability of providing precise spatial positioning considerably enhance the attractiveness of DNA for nano-scale construction. A further challenge remains to use these DNA based structures for biomedical applications.
</p><p> As proof-of-concept, a DNA-based nanodevice for multivalent thrombolytic delivery is designed, which intends to employ DNA nanostructures as carriers for the delivery of tissue plasminogen activator (tPA) and plasminogen. Universal modular adapter molecules that can simultaneously bind "down" to the DNA structures and "up" to these thrombolytic drugs are further proposed. We begin with exploring the molecular recognition properties provided by biotin-avidin and aptamer-ligand pairs, and are able to achieve site-specific display of certain protein targets along the DNA nanostructure scaffold. Yet for both of these approaches, only biotinylated or specially selected proteins can be patterned. We further propose to develop single-chain diabodies (scDb) as the adapter molecules. This scDb approach is highly modular and can be extended to assemble virtually any proteins and therapeutic molecules of interests, which at the same time will greatly enhance our molecular toolbox for nanoscale construction.</p> / Dissertation
|
42 |
Development and characterization of Mantle Cell Lymphoma specific IgGsGärdefors, Katarina January 2008 (has links)
<p>Mantle cell lymphoma (MCL) is one of several sub-types of B-cell lymphomas. The malignancy is very aggressive and average survival time is short. The hallmark of MCL is over expression of cyclin D1, however about 15% of all MCL cases do not display this over expression and are easily misdiagnosed. Recently the transcription factor Sox11 has been shown to be specifically over expressed in the nucleus of MCL-tumour cells, and polyclonal rabbit anti-Sox11 antibodies have been used to successfully identify MCL in both cyclin D1 positive and negative cases. Howev-er, human recombinant MCL-specific antibodies as have several advantages over these polyclonal rabbit antibodies; they can easily be produced in large quantities in vitro, their specificity is constant from batch to batch and they can possibly be used for therapeutic purposes. Because of this, it is desirable to produce human recombinant antibodies against proteins over expressed in MCL. In this study human recombinant IgGs have been produced towards two pro-teins over expressed in MCL, Sox11 and KIAA0882. This was done by cloning of single chain variable fragments (scFvs), previously selected from a large scFv library through phage display selection against Sox11- and KIAA0882-protein epitope signature tag (PrEST), into vectors containing human IgG constant regions followed by expression of human IgG antibodies in human embryonic kidney (HEK) 293 cells. One IgG clone for each antigen was shown to be functional and specific. Both clones were shown to have overlapping binding epitopes with their polyclonal rabbit antibody counterpart (rabbit anti-Sox11/KIAA0882) through competitive ELISA. The anti-Sox11 IgG was able to detect two bands in cell lysate in Western blot, of which one probably is Sox11 while the other band possibly could be Sox4. However, this needs to be confirmed in future experiments. The affinity of the anti-Sox11 IgG was measured in Biacore and compared to the affinity of its original scFv. This gave a rough estimation of the affinities, but the values are unreliable and the measurements need to be redone. Although more work has to be put into evaluating the potential of the produced IgGs, they compose a promising starting point to an improved understanding and improved diagnosis of MCL.</p>
|
43 |
Efficacy of oligodendrocyte precursor cells as delivery vehicles for single-chain variable fragment to misfolded SOD1 in ALS rat model / ALSモデルラットにおけるミスフォールドSOD1に対する一本鎖抗体の送達手段としてのオリゴデンドロサイト前駆細胞の有効性Minamiyama, Sumio 24 July 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24839号 / 医博第5007号 / 新制||医||1068(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 井上, 治久, 教授 寺田, 智祐, 教授 林, 康紀 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
44 |
Interfacial Design and Protein Engineering as Tools of Biomedical Nanotechnology in the Optimization of Protein Detecting Field Effect TransistorsNicholson, Theodore Roosevelt, III 16 December 2010 (has links)
No description available.
|
45 |
Optimization of Calcium-Dependent Affinity Ligands for Protein PurificationÖst, Linnea January 2021 (has links)
With an expanding life-science sector and growing production of recombinant proteins, the need for efficient downstream processing is increasing. Certain proteins are sensitive to the harsh conditions often used in protein purification, such as low pH, which can result in aggregation and denaturation. ZCa is a domain derived from Protein A that can be used for calcium-dependent purification of antibodies without the need for acidic pH. Based on this domain, the CaRA library has been constructed, which targets other therapeutic proteins than human antibodies. Four of the proteins isolated from the CaRA library, namely CaRA_scFv_1, CaRA_scFv_2, CaRA_G-CSF_1 and CaRA_G-CSF_3, are presented here for the purification of single chain variable fragment and granulate colony stimulating factor. The four proteins were produced as monomers, trimers and hexamers in an attempt to increase the binding capacity and attached to a matrix for purification using site-specific coupling. The successful binders CaRA_scFv_1 and CaRA_scFv_2 showed high affinity for their target protein scFv and were able to selectively capture an increased number of molecules through multimerization. Calcium-dependent binding was demonstrated by elution at neutral pH using the calcium chelator citrate, thus concluding that these multimerized CaRA variants can be used to considerably increase the efficiency in scFv purification while providing excellent purity and significantly reducing the risk of aggregation.
|
46 |
Produktion von monoklonalen Antikörpern und Phagenantikörpern gegen das Rinder-Prionprotein durch SFV Partikel-vermittelte Immunisierung von PrP0/0-Mäusen / Production of monoclonal and phage antibodies against bovine prion protein in PrP0/0 mice with the help of recombinant SFV particlesAhmad-Omar, Omar 26 October 2001 (has links)
No description available.
|
47 |
Deriváty protilátek využitelné k detekci lidské glutamátkarboxypeptidasy II / Antibody derivatives for the detection of human glutamatecarboxypeptidase IIBělousová, Nikola January 2018 (has links)
Prostate cancer is one of the most common human malignancies and, consequently it is critical to develop appropriate diagnostic and therapeutic tools. Glutamate carboxypeptidase II (GCPII) is currently being considered one of the most important prostate cancer markers due to its tissue- specific expression. Whereas in healthy prostatic tissue the expression levels of GCPII are low, the transformation into the tumor is associated with the substantial increase of GCPII expression, with the highest levels observed in androgen-independent metastatic tumors. GCPII is thus considered a promising marker for early phase as well as advanced metastatic stages of prostate cancer. Current research is focused on the development of highly sensitive and specific reagents that allow detection of small amounts of GCPII, for example in early stages of cancer. Antibody derivatives are promising molecules for this purpose because they have high affinity and specificity and minimum negative side effects. Protein engineering is a prefered approach for preparation of various antibody molecules that differ in size, binding properties, stability, solubility, and production means. Different types of derivatives are being developed for medical needs such as in vitro diagnosis, therapy, and in vivo imagingSmall molecular...
|
48 |
Towards Development of an Immunoassay Utilizing Circularly Permutated Proteins to Detect Environmental ContaminantsZunnoon Khan, Sara 29 August 2013 (has links)
A fusion protein composed of antibody fragments and β-lactamase was earlier created by Kojima et al. (2011), with antigen specificities against a bone disease marker and a pesticide. The enzyme was circularly permutated and fused to the variable heavy and light chain antibody fragments, thereby ensuring inactivity until binding of the target antigen triggered enzyme
activation. Upon activation, the β-lactamase produced a colorimetric signal, which indicated antigen presence. In this work, a similar strategy was used to create two novel fusion proteins composed of circularly permuted β-lactamase and superfolder green fluorescent protein with anti-benzo[a]pyrene variable antibody fragments. The fusion proteins were designed and expressed in E. coli for the development of a single-step visual immunoassay. It was hypothesized that the cp reporter proteins would be activated once the binding of B[a]P to the variable antibody fragments occurred, and this interaction was expected to produce a detectable colorimetric or fluorescent signal. Although positive results were obtained in one instance, substantial supportive evidence in favour of the hypothesis could not be obtained. / SENTINEL Bioactive Paper Network, Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chairs Program.
|
49 |
Engineering peptide specific hyper-crystallizable antibody fragments (scFv) as potential chaperones for co-crystallizationPai, Jennifer Chentzu 09 February 2011 (has links)
Hydrophobic membrane proteins perform a variety of important functions in the cell, but their structures are notoriously difficult to solve. Thus, new strategies to obtain crystals of membrane proteins for structure determination are critical. We aim to develop a toolbox of peptide specific single-chain antibody fragment chaperones engineered for hyper-crystallizability. These peptide sequences can be introduced into various regions of membrane proteins without interfering with protein function. The resulting protein-chaperone complex is expected to form a crystal lattice mediated by chaperone interactions.
We have developed candidate scFv chaperone proteins binding hexa-histidine (His6) and EYMPME (EE) tags with improved biophysical features influencing crystallization propensity, including peptide affinity, stability and solubility. The scFv libraries were generated using a novel ligation-free technique, MegAnneal, allowing us to rapidly generate large libraries based on 3D5 scFv. We identified two candidate chaperones, 3D5/His_683, specific for His6 and 3D5/EE_48, specific for EE tags. Variants exhibit high solubility (up to 16.6 mg/ml) and nanomolar peptide affinities; complexes of 3D5/EE_48 with EE-tagged proteins were isolated by gel filtration. We have developed design rules for EE peptide placement at terminal, inter-domain or internal loop regions of the target protein to balance peptide accessibility for chaperone binding while retaining rigid protein-chaperone complexes suitable for crystallization.
The 3D5/ His_683 crystallized in four different conditions, utilizing multiple space groups. The 3D5/EE_48 scFv was crystallized (3.1 Å), revealing a ~52 Å channel in the crystal lattice, which may accommodate a small peptide-tagged target protein. Our evolution experiments altered scFv surface residues, resulting in use of different crystallization contacts. Analysis of these crystal contacts and those used by crystallized 14B7 scFv variants, led us to postulate that lattice formation is driven by strong crystal contacts. To test this hypothesis, we introduced amino acid changes expected to reduce the affinity of the 3D5/EE_48 energetically dominant crystal contacts. This approach to crystal contact engineering may allow semi-rational control over lattice networks preferred by scFv chaperones. Co-crystallization trials with model proteins are on-going. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries. / text
|
50 |
Biophysical Enhancement of Protein Therapeutics and Diagnostics Through Engineered LinkersLong, Nicholas E. 27 July 2018 (has links)
No description available.
|
Page generated in 0.0518 seconds