1 |
Schémas compacts basés sur le résidu d'ordre élevé pour des écoulements compressibles instationnaires. Application à de la capture de fines échelles. / High order Residual Based Compact schemes for unsteady compressible flows. Application to scale resolving simulations.Grimich, Karim 02 October 2013 (has links)
Les solveurs de calcul en mécanique des fluides numérique (solveurs CFD) ont atteint leur maturité en termes de précision et d'efficacité de calcul. Toutefois, des progrès restent à faire pour les écoulements instationnaires surtout lorsqu'ils sont régis par de grandes structures cohérentes. Pour ces écoulements, les solveurs CFD actuels n'apportent pas de solutions assez précises à moins d'utiliser des maillages très fins. De plus, la haute précision est une caractéristique cruciale pour l'application des stratégies avancées de simulation de turbulence, comme la Simulation des Grandes Echelles (LES). Afin d'appliquer les méthodes d'ordre élevé pour les écoulements instationnaires complexes plusieurs points doivent être abordés dont la robustesse numérique et la capacité à gérer des géométries complexes.Dans cette thèse, nous étudions une famille d'approximations compactes qui offrent une grande précision non pour chaque dérivée spatiale traitée séparement mais pour le résidu r complet, c'est à dire la somme de tous les termes des équations considérées. Pour des problèmes stationnaires résolus par avancement temporelle, r est le résidu à l'état stationnaire ne comprenant que des dérivées spatiales; pour des problèmes instationnaires r comprend également la dérivée temporelle. Ce type de schémas sont appelés schémas Compacts Basés sur le Résidu (RBC). Plus précisément, nous développons des schémas RBC d'ordre élevé pour des écoulements instationnaires compressibles, et menons une étude approfondie de leurs propriétés de dissipation. Nous analysons ensuite les erreurs de dissipation et la dispersion introduites par les schémas RBC afin de quantifier leur capacité à résoudre une longueur d'onde donnée en utilisant un nombre minimal de points de maillage. Les capacités de la dissipation de RBC à drainer seulement l'énergie aux petites échelles sous-résolues sont également examinées en vue de l'application des schémas RBC pour des simulations LES implicites (ILES). Enfin, les schémas RBC sont étendus à la formulation de type volumes finis (FV) afin de gérer des géométries complexes. Une formulation FV des schémas RBC d'ordre trois préservant une précision d'ordre élevé sur des maillages irréguliers est présentée et analysée. Des applications numériques, dont la simulation d'écoulements instationnaires complexes de turbomachines régis par les équations de Navier-Stokes moyennées et des simulations ILES d'écoulements turbulents dominés par des structures cohérentes dynamiques ou en décroissance, confirment les résultats théoriques. / Computational Fluid Dynamics (CFD) solvers have reached maturity in terms of solution accuracy as well as computational efficiency. However, progress remains to be done for unsteady flows especially when governed by large, coherent structures. For these flows, current CFD solvers do not provide accurate solutions unless very fine mesh are used. Moreover, high-accuracy is a crucial feature for the application of advanced turbulence simulation strategies, like Large Eddy Simulation (LES). In order to apply high-order methods to complex unsteady flows several issues needs to be addressed among which numerical robustness and the capability of handling complex geometries.In the present work, we study a family of compact approximations that provide high accuracy not for each space derivative treated apart but for the complete residual r, i.e. the sum of all of the terms in the governing equations. For steady problems solved by time marching, r is the residual at steady state and it involves space derivatives only; for unsteady problems, r also includes the time derivative. Schemes of this type are referred-to as Residual-Based Compact (RBC). Precisely, we design high-order finite difference RBC schemes for unsteady compressible flows, and provide a comprehensive study of their dissipation properties. The dissipation and dispersion errors introduced by RBC schemes are investigated to quantify their capability of resolving a given wave length using a minimal number of grid-points. The capabilities of RBC dissipation to drain energy only at small, ill-resolved scales are also discussed in view of the application of RBC schemes to implicit LES (ILES) simulations. Finally, RBC schemes are extended to the Finite Volume (FV) framework in order to handle complex geometries. A high-order accuracy preserving FV formulation of the third-order RBC scheme for general irregular grids is presented and analysed. Numerical applications, including complex Reynolds-Averaged Navier-Stokes unsteady simulation of turbomachinery flows and ILES simulations of turbulent flows dominated by coherent structure dynamics or decay, support the theoretical results.
|
2 |
Méthodes compactes d’ordre élevé pour les écoulements présentant des discontinuités / High-order compact schemes for discontinuous flow field simulationLamouroux, Raphaël 02 December 2016 (has links)
Dans le cadre du développement récent des schémas numériques compacts d’ordre élevé, tels que la méthode de Galerkin discontinu (discontinuous Galerkin) ou la méthode des différences spectrales (spectral differences), nous nous intéressons aux difficultés liées à l’utilisation de ces méthodes lors de la simulation de solutions discontinues.L’utilisation par ces schémas numériques d’une représentation polynomiale des champs les prédisposent à fournir des solutions fortement oscillantes aux abords des discontinuités. Ces oscillations pouvant aller jusqu’à l’arrêt du processus de simulation, l’utilisation d’un dispositif numérique de détection et de contrôle de ces oscillations est alors un prérequis nécessaire au bon déroulement du calcul. Les processus de limitation les plus courants tels que les algorithmes WENO ou l’utilisation d’une viscosité artificielle ont d’ores et déjà été adaptés aux différentes méthodes compactes d’ordres élevés et ont permis d’appliquer ces méthodes à la classe des écoulements compressibles. Les différences entre les stencils utilisés par ces processus de limitation et les schémas numériques compacts peuvent néanmoins être une source importante de perte de performances. Dans cette thèse nous détaillons les concepts et le cheminement permettant d’aboutir à la définition d’un processus de limitation compact adapté à la description polynomiale des champs. Suite à une étude de configurations monodimensionnels, différentes projections polynomiales sont introduites et permettent la construction d’un processus de limitation préservant l’ordre élevé. Nous présentons ensuite l’extension de cette méthodologie à la simulation d’écoulements compressibles bidimensionnels et tridimensionnels. Nous avons en effet développé les schémas de discrétisation des différences spectrales dans un code CFD non structuré, massivement parallèle et basé historiquement sur une méthodologie volumes finis. Nous présentons en particulier différents résultats obtenus lors de la simulation de l’interaction entre une onde de choc et une couche limite turbulente. / Following the recent development of high order compact schemes such as the discontinuous Galerkin or the spectraldifferences, this thesis investigates the issues encountered with the simulation of discontinuous flows. High order compactschemes use polynomial representations which tends to introduce spurious oscillations around discontinuities that can lead to computational failure. To prevent the emergence of these numerical issues, it is necessary to improve the schemewith an additional procedure that can detect and control its behaviour in the neighbourhood of the discontinuities,usually referred to as a limiting procedure or a limiter. Most usual limiters include either the WENO procedure, TVB schemes or the use of an artificial viscosity. All of these solutions have already been adapted to high order compact schemes but none of these techniques takes a real advantage of the richness offered by the polynomial structure. What’s more, the original compactness of the scheme is generally deteriorated and losses of scalability can occur. This thesis investigates the concept of a compact limiter based on the polynomial structure of the solution. A monodimensional study allows us to define some algebraic projections that can be used as a high-order tool for the limiting procedure. The extension of this methodology is then evaluated thanks to the simulation of different 2D and 3D test cases. Those results have been obtained thanks to the development of a parallel solver which have been based on a existing unstructured finite volume CFD code. The different exposed studies detailed end up to the numerical simulation of the shock turbulent boundary layer.
|
Page generated in 0.071 seconds