Spelling suggestions: "subject:"schéma dde nesterov"" "subject:"schéma dde nesterova""
1 |
Algorithmes rapides d'optimisation convexe. Applications à la reconstruction d'images et à la détection de changements.Weiss, Pierre 21 November 2008 (has links) (PDF)
Cette thèse contient des contributions en analyse numérique et en vision par ordinateur. Dans une première partie, nous nous intéressons à la résolution rapide, par des méthodes de premier ordre, de problèmes d'optimisation convexe. Ces problèmes apparaissent naturellement dans de nombreuses tâches telles que la reconstruction d'images, l'échantillonnage compressif ou la décomposition d'images en texture et en géométrie. Ils ont la particularité d'être non différentiables ou très mal conditionnés. On montre qu'en utilisant des propriétés fines des fonctions à minimiser on peut obtenir des algorithmes de minimisation extrêmement efficaces. On analyse systématiquement leurs taux de convergence en utilisant des résultats récents dûs à Y. Nesterov. Les méthodes proposées correspondent - à notre connaissance - à l'état de l'art des méthodes de premier ordre. Dans une deuxième partie, nous nous intéressons au problème de la détection de changements entre deux images satellitaires prises au même endroit à des instants différents. Une des difficultés principales à surmonter pour résoudre ce problème est de s'affranchir des conditions d'illuminations différentes entre les deux prises de vue. Ceci nous mène à l'étude de l'invariance aux changements d'illuminations des lignes de niveau d'une image. On caractérise complètement les scènes qui fournissent des lignes de niveau invariantes. Celles-ci correspondent assez bien à des milieux urbains. On propose alors un algorithme simple de détection de changements qui fournit des résultats très satisfaisants sur des images synthétiques et des images Quickbird réelles.
|
Page generated in 0.0998 seconds