• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-based mutational analysis of S. Pombep13suc1

Dzivenu, Oki Kwoshi January 1999 (has links)
p13<sup>suc1</sup> from schizosaccharomyces pombe is a member of a family of non-enzymatic cell cycle regulatory proteins called CKS for <strong>C</strong>yclin-<strong>D</strong>ependent kinases <strong>S</strong>ubunit. Other members of this family include CKS1 (S. cerevisiae</em?), CksHsl and CksHs2 (Homo sapiens). The CDKs (CDK1-CDK8) for <strong>C</strong>yclin-<strong>D</strong>ependent <strong>K</strong>inases are a class of Ser/Thr kinases that regulate the cell cycle. The suc1<sup>+</sup> gene was initially identified as a seppresor of certain CDKl temperature sensitive mutations. Despite the wealth of crystallographic models available plus ample - albeit, sometimes conflicting - evidence from genetics and biochemical studies, an account of the exact physiological role of the CKS proteins remains an elusive goal. In a quest to identify the residues and hence the particular surface region involved in mediating protein-protein interactions with CDK2,1 employed the X-ray structure of Suc1 at 2.7A resolution as guide for a site-specific mutagenesis study. Comparative biochemical and biophysical characterisation of Suc1 and the mutants led to the conclusion that isoleucine-94 and Leucine-96 (located in the hydrophobic patch) are involved in mediating protein-protein interactions with GST-CDK2. This conclusion has since been confirmed by the publication of the X-ray structure of monomeric CksHs1l in a complex with CDK2 by Bourne et al., 1996 (Cell 84: 863-874). An extension of the mutational study to test the hypothesis that Suc1 may utilise conserved residues at the anion-binding site to mediate protein-protein interactions with the Anaphase Promoting Complex (APC) is described. X-ray data has been collected on wild type Suc1 crystals at 100K to 2.3Å resolution. The structure has been resolved and refined to a crystallographic R-factor of 22.6%. S. pombe Suc1 exists as a zinc-stabilised, non strand-exchanged dimer in both the 2.1Å and 2.3Å models. Structural analyses of two Suc1 folding mutants are also presented. The cyclins (A - H) are positive regulatory subunits of CDKs. They share a high degree of homology over a region of about 100 amino acid residues called the "cyclin box". The determination of the crystal structure of cyclin A3 (an N-terminal truncated version of bovine cyclin A) and a CDK2-cyclin A3 complex by other workers has revealed the mechanism of activation of CDKs by cyclins. In S. pombe, the CDKl-cyclin B heterodimeric complex constitutes the mitotic kinase. In order to understand the specificity underlying the CDK-cyclin interaction, I embarked on a structural study of S. pombe cyclin B and CDK1. Both full- length proteins have proven intractable to attempts to overproduce them in a soluble form in E. coli for crystallisation studies. A truncated version of cyclin B (similar to cyclin A3) was designed, cloned and overproduced in E. coli. The cyclin B3 protein was directed into inclusion bodies as insoluble aggregates. Extensive attempts - both in vivo and in vitro - to produce a soluble cyclin B3 proved unsuccessful. Finally, an E. coli co-expression system designed to overproduce CDK1-cyclin A3, CDK1-cyclin B3, CDK1-cyclin B and CDK1-Suc1 complexes is described.
2

Regulación por estrés oxidativo de la actividad del factor de transcripción Pap1 de Schizosaccharomyces pombe

Castillo Andreo, Esther 17 June 2005 (has links)
Las especies reactivas del oxígeno (ROS), superóxido (O2o-), peróxido de hidrógeno (H2O2), y radical hidroxilo (OHo), se generan a partir de la reducción parcial del oxígeno molecular durante procesos metabólicos como la respiración o tras la exposición a ciertos agentes ambientales como las radiaciones UV. Estas ROS pueden reaccionar con biomoléculas como lípidos, proteínas y DNA e inactivar su función, por lo que las células han desarrollado actividades enzimáticas que se encargan de mantener niveles no-tóxicos de estos oxidantes. Se llama estrés oxidativo a la situación en la cual se produce un incremento en la concentración intracelular de ROS como consecuencia de un aumento en la generación o una disminución en la degradación de las mismas. En respuesta a estrés oxidativo, la célula activa rutas de señalización y factores de transcripción específicos que activan la expresión de proteínas antioxidantes encargadas de reestablecer los niveles redox intracelulares y de reparar los desperfectos causados por estos oxidantes. La levadura Schizosaccharomyces pombe es un organismo modelo ideal para el estudio de las respuestas a estrés oxidativo en las células eucariotas ya que posee sensores específicos a estrés oxidativo como el factor de transcripción Pap1 (pombe AP-1-like) y rutas de respuesta global a estrés, como las descritas en las células de mamífero, que son activadas por diferentes tipos de estrés. En el centro de esta ruta de respuesta global a estrés se encuentra la MAPK (Mitogen-activated protein kinase) Sty1. El factor de transcripción Pap1, de localización citoplasmática basal, se acumula en el núcleo en respuesta a estrés oxidativo. Este cambio de localización subcelular es debido a la inhibición del exporte nuclear dependiente de Crm1, aunque se desconocía el mecanismo molecular utilizado por este factor de transcripción para sensar y responder a oxidantes como H2O2 y dietilmaleto (DEM). Los resultados obtenidos indican que H2O2 oxida de forma reversible dos residuos de cisteína de Pap1 induciendo, seguramente, la formación de un puente disulfuro intramolecular, mientras que, DEM actúa como un agente alquilante que modifica de forma irreversible los residuos de cisteína del dominio C-terminal de Pap1. El gen que codifica para el factor de transcripción Pap1 fue aislado inicialmente como un gen que, en elevado número de copias, confería a las células un fenotipo de resistencia a ciertas drogas como estaurosporina. Esto es debido a que, tras acumularse en el núcleo en respuesta a estrés oxidativo, Pap1 activa la transcripción de genes implicados tanto en la respuesta antioxidante como en la resistencia a multidrogas. Todos aquellos genes que, al igual que pap1 fueron identificados por su implicación en la resistencia a multidrogas, codifican para proteínas que regulan la actividad del factor de transcripción Pap1. hba1 fue el único gen relacionado con resistencia a multidrogas, cuyo producto génico, una proteína con un dominio de unión a Ran (Ran-binding domain), Hba1, no había sido relacionado con la actividad de Pap1. Uno de los objetivos de mi trabajo experimental era el de determinar si Hba1 tenía un papel en la regulación de la actividad de Pap1. Nuestros resultados indican que la proteína Hba1, localizada en el nucleoplasma de la célula, participa en el exporte nuclear mediado por Crm1 de ciertas proteínas como el factor de transcripción Pap1 y la MAPK Sty1, aunque no de otras como la proteína PKI. Por ello, la pérdida de función de Hba1, por sobreexpresión o deleción del gen hba1, induce la localización nuclear constitutiva de Pap1 y Sty1 en ausencia de estrés. Esta localización nuclear de Pap1 es suficiente para la activación transcripcional de sus genes diana. Por lo tanto, el fenotipo de resistencia aumentada a multidrogas de las cepas en las que se ha perdido la actividad de la proteína Hba1, es debido a la acumulación de Pap1 en el núcleo en condiciones de no-estrés.

Page generated in 0.0805 seconds