1 |
Analysis and computation of a quadratic matrix polynomial with Schur-products and applications to the Barboy-Tenne model /Lahnovych, Carrie. January 2010 (has links)
Typescript. Includes bibliographical references (leaf 23).
|
2 |
Multipliers of dynamical systemsMcKee, Andrew January 2017 (has links)
Herz–Schur multipliers of a locally compact group have a well developed theory coming from a large literature; they have proved very useful in the study of the reduced C∗-algebra of a locally compact group. There is also a rich connection to Schur multipliers,which have been studied since the early twentieth century, and have a large number of applications. We develop a theory of Herz–Schur multipliers of a C∗-dynamical system, extending the classical Herz–Schur multipliers, making Herz–Schur multiplier techniques available to study a much larger class of C∗-algebras. Furthermore, we will also introduce and study generalised Schur multipliers, and derive links between these two notions which extend the classical results describing Herz–Schur multipliers in terms of Schur multipliers. This theory will be developed in as much generality as possible, with reference to the classical motivation. After introducing all the necessary concepts we begin the investigation by defining generalised Schur multipliers. The main result is a dilation type characterisation of these multipliers; we also show how such multipliers can be represented using HilbertC∗-modules. Next we introduce and study generalised Herz–Schur multipliers, first extending a classical result involving the representation theory of SU(2), before studying how such functions are related to our generalised Schur multipliers. We give a characterisation of generalised Herz–Schur multipliers as a certain class of the generalised Schur multipliers, and obtain a description of precisely which Schur multipliers belong to this class. Finally, we consider some ways in which the generalised multipliers can arise; firstly, from the classical multipliers which provide our motivation, secondly, from the Haagerup tensor product of a C∗-algebra with itself, and finally from positivity considerations. We show that our theory behaves well with respect to positivity and give conditions under which our multipliers are automatically positive in a natural sense.
|
3 |
Representações parciais de grupos, seus domínios e o multiplicador de Schur parcial / Partial group representations, their domains and the partial Schur multiplierLima, Helder Geovane Gomes de 28 March 2014 (has links)
O multiplicador de Schur parcial de um grupo G é um semigrupo inverso comutativo pM(G) que, no estudo de representações parciais projetivas de grupos, desempenha um papel análogo ao do multiplicador de Schur clássico M(G). Há uma descrição de pM(G) como uma união de grupos abelianos, em que cada componente pM_D(G) é formada por classes de equivalência de certas funções parciais (chamadas de conjuntos fatores parciais), as quais assumem valores em um corpo e têm como domínio um subconjunto D de G × G. Os domínios D formam um reticulado e foram caracterizados como os subconjuntos T-invariantes de G × G, em que T é um monoide específico atuando em G × G. A componente total pM_{G × G}(G), que corresponde aos conjuntos fatores totalmente definidos, é particularmente interessante pois contém M(G) como um de seus subgrupos e, além disso, qualquer outra componente é uma imagem epimorfa da componente total. Um dos objetivos deste trabalho é determinar a componente total do multiplicador de Schur parcial para algumas classes importantes de grupos, como os grupos diedrais, os grupos dicíclicos e os produtos de grupos cíclicos. Outro tópico que será abordado é a estrutura do reticulado dos domínios dos conjuntos fatores parciais, destacando-se propriedades daqueles que correspondem às representações parciais ditas elementares, as quais possuem um papel relevante na teoria. Provaremos que todo domínio pode ser representado em uma forma única como uma reunião de certos domínios indecomponíveis, que consistem de peças estruturais chamadas de blocos e domínios minimais. Também será determinada a estrutura dos domínios elementares e serão obtidos alguns invariantes numéricos do conjunto parcialmente ordenado dos domínios elementares. Como uma consequência dos resultados obtidos, serão caracterizados os grupos para os quais todos os domínios elementares são indecomponíveis. Além disso será feita uma aplicação da teoria de álgebras de semigrupos à álgebra parcial de grupo, que é uma álgebra responsável pelas representações parciais de grupos. / The partial Schur multiplier of a group G is a commutative inverse semigroup pM(G) which, in the study of partial projective representations, plays a role analogous to the classical Schur multiplier M(G). There is a description of pM(G) as a union of abelian groups, in which each component pM_D(G) is formed by the equivalence classes of certain partial functions (called partial factor sets), taking values in a field and having as its domain a subset D of G × G. The domains D form a lattice and were characterized as the T-invariant subsets of G × G, where T is a specific monoid acting on G × G. The total component pM_{G × G}(G), which corresponds to the totally defined factor sets, is particularly interesting because it contains M(G) as one of its subgroups and, moreover, any other component is an epimorphic image of the total component. One of the objectives of this work is to determine the total component of the partial Schur multiplier for some important classes of groups, such as the dihedral groups, the dicyclic groups and the products of cyclic groups. Another topic which will be considered is the structure of the lattice of domains of partial factor sets, emphasizing properties of those domains that correspond to the so-called elementary partial representations, which play a relevant role in the theory. We shall prove that each domain can be represented in a unique way as a union of certain indecomposable domains, where the latter consists of the so-called blocks and minimal domains. The structure of the elementary domains also will be determined, and some numerical invariants of the partially ordered set of the elementary domains will be given. As a consequence of the obtained facts, the groups whose elementary domains are indecomposable will be characterized. We will also give an application of the theory of semigroup algebras to the partial group algebra, an algebra which is responsible for partial group representations.
|
4 |
Representações parciais de grupos, seus domínios e o multiplicador de Schur parcial / Partial group representations, their domains and the partial Schur multiplierHelder Geovane Gomes de Lima 28 March 2014 (has links)
O multiplicador de Schur parcial de um grupo G é um semigrupo inverso comutativo pM(G) que, no estudo de representações parciais projetivas de grupos, desempenha um papel análogo ao do multiplicador de Schur clássico M(G). Há uma descrição de pM(G) como uma união de grupos abelianos, em que cada componente pM_D(G) é formada por classes de equivalência de certas funções parciais (chamadas de conjuntos fatores parciais), as quais assumem valores em um corpo e têm como domínio um subconjunto D de G × G. Os domínios D formam um reticulado e foram caracterizados como os subconjuntos T-invariantes de G × G, em que T é um monoide específico atuando em G × G. A componente total pM_(G), que corresponde aos conjuntos fatores totalmente definidos, é particularmente interessante pois contém M(G) como um de seus subgrupos e, além disso, qualquer outra componente é uma imagem epimorfa da componente total. Um dos objetivos deste trabalho é determinar a componente total do multiplicador de Schur parcial para algumas classes importantes de grupos, como os grupos diedrais, os grupos dicíclicos e os produtos de grupos cíclicos. Outro tópico que será abordado é a estrutura do reticulado dos domínios dos conjuntos fatores parciais, destacando-se propriedades daqueles que correspondem às representações parciais ditas elementares, as quais possuem um papel relevante na teoria. Provaremos que todo domínio pode ser representado em uma forma única como uma reunião de certos domínios indecomponíveis, que consistem de peças estruturais chamadas de blocos e domínios minimais. Também será determinada a estrutura dos domínios elementares e serão obtidos alguns invariantes numéricos do conjunto parcialmente ordenado dos domínios elementares. Como uma consequência dos resultados obtidos, serão caracterizados os grupos para os quais todos os domínios elementares são indecomponíveis. Além disso será feita uma aplicação da teoria de álgebras de semigrupos à álgebra parcial de grupo, que é uma álgebra responsável pelas representações parciais de grupos. / The partial Schur multiplier of a group G is a commutative inverse semigroup pM(G) which, in the study of partial projective representations, plays a role analogous to the classical Schur multiplier M(G). There is a description of pM(G) as a union of abelian groups, in which each component pM_D(G) is formed by the equivalence classes of certain partial functions (called partial factor sets), taking values in a field and having as its domain a subset D of G × G. The domains D form a lattice and were characterized as the T-invariant subsets of G × G, where T is a specific monoid acting on G × G. The total component pM_(G), which corresponds to the totally defined factor sets, is particularly interesting because it contains M(G) as one of its subgroups and, moreover, any other component is an epimorphic image of the total component. One of the objectives of this work is to determine the total component of the partial Schur multiplier for some important classes of groups, such as the dihedral groups, the dicyclic groups and the products of cyclic groups. Another topic which will be considered is the structure of the lattice of domains of partial factor sets, emphasizing properties of those domains that correspond to the so-called elementary partial representations, which play a relevant role in the theory. We shall prove that each domain can be represented in a unique way as a union of certain indecomposable domains, where the latter consists of the so-called blocks and minimal domains. The structure of the elementary domains also will be determined, and some numerical invariants of the partially ordered set of the elementary domains will be given. As a consequence of the obtained facts, the groups whose elementary domains are indecomposable will be characterized. We will also give an application of the theory of semigroup algebras to the partial group algebra, an algebra which is responsible for partial group representations.
|
5 |
Um algoritmo para estimar a dimensão do segundo grupo de homologia de um grupo finitamente apresentado / An Algorithm for low Dimensional Group HomologyVIEIRA, Flavio Pinto 12 April 2012 (has links)
Made available in DSpace on 2014-07-29T16:02:20Z (GMT). No. of bitstreams: 1
Dissertacao Flavio P Vieira.pdf: 631827 bytes, checksum: b4c3dfd45d41b0313e21e87b61f0c94e (MD5)
Previous issue date: 2012-04-12 / The main goal of this work is to establish a primary bound for the dimension of the second
homology group of a group G, with coefficients in a field k of characteristic p, H2(G;k),
using the operating system GAP. It will be presented with several examples, where in
some cases, will be calculated the exact dimensions and in other cases only an upper
bound. / O trabalho tem por objetivo principal estabelecer uma cota superior para a dimensão
do segundo grupo de homologia de um grupo G, com coeficientes em um corpo k de
característica p, H2(G;k), usando o sistema operacional GAP. Será apresentado uma gama
de exemplos, onde em alguns casos, calcularemos exatamente a dimensão e em outras
somente uma cota superior.
|
Page generated in 0.0535 seconds