1 |
Etude de maladies du rythme cardiaque chez l'homme en utilisant des cardiomyocytes dérivés de cellules souches pluripotentes induites / hiPSCs, Cardiomyocytes, Arrhythmia, IRX5, Brugada syndrome, SCN5A, Gap junction, Ventricular conduction systemReda al Sayed, Zeina 12 October 2018 (has links)
Malgré les progrès considérables cellulaire arythmique commun entre des patients réalisés en termes de compréhension des à fonds génétiques différents atteints de mécanismes à l'origine des maladies du rythme syndrome de Brugada (BrS). Nous avons montré cardiaque, ces dernières restent parmi les qu'IRXS participe à la régulation de la problèmes les plus fréquemment rencontrés en conduction ventriculaire rapide en régulant cardiologie et constituent la principale cause de l'expression de SCNSA et des jonctions gap dans décès. Le dysfonctionnement ou la désexpression les cardiomyocytes humains. En ce qui concerne d'un seul canal ionique peuvent être à l'origine de la BrS, indépendamment du contexte génétique plusieurs types d'arythmies en fonction du fond ou de la présence des mutation SCN5A, les génétique du patient. Les cardiomyocytes dérivées hiPS-CMs ventriculaires issues de patients de cellules souches pluripotentes induites de différents atteints de BrS étaient plus sujets aux l'homme (hiPS-CMs) confèrent un outil précieux arythmies qui étaient associees à une et fiable pour mieux comprendre l'arythmie augmentation du sodium tardif. Globalement, les cardiaque. hiPS-CMs fournissent un outil pertinent pour De là, nous avons défié ce modèle pour modéliser l'arythmie cardiaque humaine, en plus caractériser l'arythmie causée par des mutations de elles confèrent un environnement cellulaire facteur de transcription Iroquois, IRX5, et pour pertinent pour étudier de nouvelles fonctions afin explorer la présence d'un phénotype de développer des pistes thérapeutiques. / Despite considerable advances in the understanding of basic mechanisms involved in the genesis and perpetuation of arrhythmias, cardiac rhythm disorders remain among the most commonly encountered problems and the leading cause of death in cardiology. Dysfunction or misexpression of one single ion channel can be at the root of several types of arrhythmias depending on patient genetic background. Human induced pluripotent stem cells derived cardiomyocytes (hiPS-CMs) confer a valuable and reliable tool to better understand cardiac arrhythmia. Therefore, we challenged this model to characterize arrhythmia caused by missense mutations at the Iroquois transcription factor, IRX5, and to elaborate a common cellular phenotype for Brugada syndrome (BrS) described in patients with different genetic backgrounds. Interestingly, we showed that JRX5 participates in controlling fast ventricular conduction through sustaining SCN5A and gap junction proper expression in human cardiomyocytes. As for BrS, regardless of the genetic background or the presence of SCN5A mutations, ventricular hiPSCMs originated from different BrS patients were more prone to arrhythmias which were associated with increased late sodium. Overall, hiPS-CMs provide a pertinent translational tool to model human cardiac arrhythmia, and they confer a relevant cellular environment to study new functions and therefore develop novel therapeutic tracks.
|
2 |
Infant sudden death: a novel mutation responsible for impaired sodium channel functionMorganstein, Jace Grant 22 January 2016 (has links)
In coordination with the New York City Medical Examiner's Office, we received the sequence of a mutated SCN5A gene that was found in a five-week-old girl who died in her sleep. SCN5A codes for the voltage-gated cardiac sodium channel alpha subunit (Nav1.5) and is responsible for the fast depolarization in phase zero of the cardiac action potential. The mutations that were present in the girl's SCN5A gene were a missense mutation, Q1832E, and a truncation mutation, R1944X. In order to gain an understanding of the conditions that led to the patient's death, we carried out a functional analysis on the mutant channels and measured how their properties differed from wild type Nav1.5 properties.
For our functional analysis we carried out mutagenesis reactions to produce three experimental constructs in order to examine independent effects of Q1832E or R1944X, and to examine their interaction (mutant Nav1.5 that contains both Q1832E or R1944X; as was found in the genetic screen). These constructs were transfected into HEK 293 cells and studied using the patch clamp analysis using the whole cell configuration. Experiments were carried out to test the Nav1.5 current voltage relationships, the recovery from inactivation properties, and steady state inactivation properties.
The data demonstrated that each of the three constructs resulted in a significantly reduced current density when compared to wild type Nav1.5 currents. The gating properties of the mutant channels were similar to those of wild type Nav1.5, though Nav1.5-R1944X did show a statistically significant slower recovery from inactivation than the wild type channel. Though more experimentation is needed to determine the mechanism behind the reduced current in the mutant channels, our data shows that each of the mutations is sufficient to produce a severely dysfunctional channel and this is likely the cause of the patient's death.
|
3 |
Estudio del gen del canal de sodio (SCN5A) en una población de pacientes con diagnóstico de síndrome de BrugadaGarcía-Molina Sáez, Esperanza 27 July 2011 (has links)
El Síndrome de Brugada (SB) se caracteriza por una elevación del segmento ST en las derivaciones precordiales derechas del ECG. Tiene una base genética estando ligado a mutaciones en el canal de Na+ del corazón (SCN5A) y otros genes recientemente relacionados.
El estudio de secuenciación directa del gen SCN5A en nuestra población llevó a la identificación de mutaciones causales o probablemente causales en un 10% de los casos, inferior al publicado en la literatura. En los casos índice en los que no se detectó una variante en su secuencia se realizó el estudio de grandes reordenamientos génicos sin identificarse ninguno mediante la técnica de Multiplex Ligation Probe Amplification.
Los pacientes de nuestra cohorte portadores de mutación presentan con mayor frecuencia ECG tipo I espontáneo y más casos de muerte súbita familiar que los pacientes de SB con genotipo negativo. El estudio genético de las familias de los portadores de mutación ha permitido identificar a un grupo significativo de portadores sin expresión fenotípica.
|
4 |
Regulations of Sodium Channels by Wnt Signalling in CardiomyocytesChu, Cencen 23 June 2022 (has links)
Background: The canonical Wnt/β-catenin pathway is activated in a variety of heart diseases, such as myocardial infarction and cardiac hypertrophy, that are associated with altered ion channel expressions and increased risk of cardiac arrhythmias. Previous work from our lab has demonstrated that the Wnt/β-catenin signalling (Wnt signalling) inhibits sodium (Na+) current in rat cardiomyocytes. In this project, we aim to investigate the mechanisms that underlie the inhibition of Na+ current by Wnt signalling in both rat and human cardiomyocytes.
Results: In both neonatal rat ventricular myocytes (NRVMs) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), activation of the Wnt/β-catenin signalling led to reduced level of Na+ channel gene transcript (Scn5a), channel protein (Nav1.5) and channel current density. This suggests that reduced Scn5a expression is likely the primary mechanism for reduced Na+ current. In addition, we found that activation of the Wnt/β-catenin signalling in both NRVMs and iPSC-CMs upregulated Tbx3 transcript and protein levels, which is a transcription factor that is known to suppress Scn5a transcription. In NRVMs, siRNA-mediated Tbx3 knockdown attenuated (by ~30%) Wnt-induced reductions in Scn5a and Nav1.5 levels.
Conclusions: Our findings are consistent with the conclusion that Wnt/β-catenin signalling inhibits Na+ current in both rat and human cardiomyocytes by reducing Scn5a levels, with Tbx3 as one of the mediators.
|
5 |
Etude des bases moléculaires à l'origine des troubles cardiaques des patients atteints de dystrophies myotoniques / Study of molecular basis at the origin of cardiac defects of patients affected by myotonic dystrophiesFreyermuth, Fernande 27 September 2013 (has links)
Les dystrophies myotoniques sont les formes les plus communes des dystrophies musculaires chez l’adulte, caractérisées par de nombreux symptômes tels que les défauts de conduction et de rythme cardiaques fatals chez 30% des patients DM, dont les causes moléculaires sont inconnues. Les DM sont des maladies à gain de fonction d’ARN faisant intervenir une séquestration des facteurs d’épissage alternatif MBNL par des ARNs contenant de longues répétitions (C)CUG, conduisant à des altérations de l’épissage alternatif. Par des approches de puces à ADN, nous avons identifié et confirmé la diminution spécifique de miR-1, conduisant à la dérégulation de l’expression de la connexine 43 et du canal à calcium cardiaque Cav1.2 dans le coeur de patients DM. Par séquençage à haut débit d’ARNs de cœur de patients atteints ou non de DM, j’ai montré la dérégulation de plus d’une centaine d’épissages alternatifs dont celui des exons 6A/6B du principal canal à sodium cardiaque, SCN5A. J’ai montré que cet épissage est régulé par MBNL, et j’ai confirmé l’inclusion anormale de l’exon 6A à la place de l’exon 6B dans l’ARNm SCN5A conduisant à une diminution de l’activité du canal SCN5A, pouvant expliquer les défauts cardiaques des patients DM. / The myotonic dystrophies (DM) are the most common forms of muscular dystrophies in adults, characterized by several symptoms such as cardiac conduction defects and arrhythmias, fatals in 30% of DM patients. The molecular causes of DM cardiac defects are unknown. The RNA gain of function involving a sequestration of MBNL, alternatives splicing factors by large RNAs containing large (C)CUG, leading to alternative splicing defects. By microarray analysis, we identified and confirmed the specific decrease of miR-1, leading to misregulation of connexin 43 and cardiac calcium channel Cav1.2 expressions in DM patients’ hearts. By RNA-Sequencing of samples from DM and non-DM patients hearts, we have shown misregulation of more than 100 alternative splicing, such as the most interesting splicing alteration which is that of exons 6A/6B of SCN5A, the maincardiac sodium channel. We have shown this splicing is regulated by MBNL, and we have confirmed the abnormal inclusion of exon 6A instead of exon 6B in SCN5A mRNA in heart of DM patients, resulting in the decrease of SCN5A channel activity. This decrease could explain the cardiac defects of DM patients.
|
6 |
Étude électrophysiologique de canalopathies d’origine génétique causant des troubles du rythme cardiaque / Electrophysiological study of genetic channelopathies causing disorders of heart rhythmVincent, Yohann 16 October 2015 (has links)
L'unité de recherche EA4612 de l'Université Claude Bernard Lyon 1 s'intéresse à la physiopathologie des troubles du rythme cardiaque, en particulier d'origine héréditaire. Nous avons étudié des mutations de gène de canaux ioniques découvertes chez des patients hétérozygotes atteints d'un syndrome du QT long ou de bradycardie sinusale et de fibrillation atriale. La mutation R148W du gène hERG diminue le courant maximal de 29%. Dans un modèle mathématique, ceci allonge la durée du potentiel d'action ventriculaire, ce qui pourrait rendre compte du phénotype QT long des porteurs. La mutation F627L du gène hERG se situe au centre du motif de sélectivité ionique (GFG) de la protéine hERG. Elle cause une perte de la sélectivité ionique du courant, de la propriété d'inactivation et de la sensibilité aux bloqueurs spécifiques. Ainsi, la présence du groupement aromatique de la chaîne latérale semble essentielle au maintien des propriétés du canal. La mutation Q1476R du gène SCN5A provoque un gain de fonction du courant sodique persistant. Dans un modèle de cellule cardiaque ventriculaire humaine, nous montrons une surcharge sodique intracellulaire pouvant protéger de l'allongement de la durée du potentiel d'action ventriculaire. La mutation D600E du gène HCN4 accélère la désactivation, ce qui pourrait causer une bradycardie. Par ailleurs, la mutation abolit la réponse à la suppression de l'adénosine monophosphate cyclique (AMPc) intracellulaire. La mutation V501M du gène HCN4 cause une perte totale de courant à l'état homozygote. A l'état hétérozygote, l'amplitude moyenne du courant est inchangée par rapport au WT. Cependant, un décalage négatif de la courbe d'activation rendrait compte de la bradycardie des patients porteurs / The EA4612 unit of the University Lyon 1 focuses on the pathophysiology of heart rhythm disorders, especially hereditary. We studied ion channel gene mutations discovered in heterozygote patients with long QT syndrome or sinus bradycardia and atrial fibrillation.The R148W mutation of the hERG gene decreases the maximum current by 29%. In a mathematical model, this lengthens the duration of the ventricular action potential, which could account for long QT phenotype of the patients. The F627L mutation of the hERG gene is in the center of the ion selectivity filter (GFG) of the hERG protein. It causes a loss of the ionic selectivity of the current, the inactivating property and sensitivity to specific blockers. Thus, the presence of this aromatic group of the side chain seems to be essential to the maintenance of the channel properties. The mutation Q1476R in the SCN5A gene causes a gain-of-function of the persistent sodium current. In a model of human ventricular heart cells, we show an intracellular sodium overload that can protect against the lengthening of the duration of the ventricular action potential. The D600E mutation of the HCN4 gene accelerates deactivation, which could cause bradycardia. Moreover, the mutation abolishes the response to the suppression of intracellular cyclic adenosine monophosphate (cAMP). The V501M mutation of the HCN4 gene causes a total loss of current in the homozygous state. In the heterozygous state, the average amplitude of the current is unchanged from the WT. However, a negative shift of the activation curve would account for bradycardia in patients
|
7 |
Cardiac sodium channel mutation associated with epinephrine-induced QT prolongation and sinus node dysfunction / エピネフリン誘発性QT延長及び洞結節機能不全に関連する心筋ナトリウムチャネル遺伝子変異の解析Jiarong, Chen 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第19609号 / 医博第4116号 / 新制||医||1015(附属図書館) / 32645 / 京都大学大学院医学研究科医学専攻 / (主査)教授 岩井 一宏, 教授 小杉 眞司, 教授 瀬原 淳子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
8 |
The Development of a Patient-Derived Induced Pluripotent Stem Cell Model for the Investigation of SCN5A-D1275N- Related Cardiac Sodium Channelopathy / 患者由来iPS細胞モデルを用いたSCN5A-D1275N関連心臓ナトリウムチャネル病の病態解明Hayano, Mamoru 23 January 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20792号 / 医博第4292号 / 新制||医||1025(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 山下 潤, 教授 川村 孝, 教授 湊谷 謙司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
9 |
Functional Characterization of SCN5A, The Cardiac Sodium Channel Gene Associated With Cardiac Arrhythmias and Sudden DeathWu, Ling 07 April 2008 (has links)
No description available.
|
10 |
The Role of Synaptically Released Free Zinc in the Zinc Rich Region of Epileptic Mammalian Hippocampal CircuitryBastian, Chinthasagar 22 September 2010 (has links)
No description available.
|
Page generated in 0.048 seconds