Spelling suggestions: "subject:"seja lien"" "subject:"seja lin""
21 |
Effects Of Food Deprivation On Blood Lipid Concentration And Composition In Steller Sea Lions (eumetopias Jubatus)Berman, Michelle Lea 01 January 2005 (has links)
Steller sea lions, the largest Otariid, fast during their breeding season; during this time they refrain from ingesting food for a period of 12-43 days. Fasting, while undertaking an extremely energetically demanding activity (breeding and pupping), requires specific physiological adaptations. This study examined the physiological response to fasting of two age classes, juveniles and sub-adults, during the breeding and non-breeding seasons to determine how these animals utilize lipids and the pattern of fatty acid mobilization from lipid stores during fasting. Four juveniles and 5 sub-adults were fasted for one and two weeks, respectively, and blood samples were collected approximately every 3 days for lipid analysis. The concentrations of plasma non-esterified fatty acids (NEFA) were analyzed spectrophotometrically. Serum fatty acid composition was analyzed using gas chromatography (GC) and their individual weight percent (wt %) were correlated with their peak retention time and calculated using the area under each peak. Sixty-nine fatty acids were quantified from each sample. However, only those with concentrations above 0.2 wt. % were included in the analysis. Sub-adult samples were grouped on a percent mass loss basis (0%, 7-8% and 15% mass loss) to facilitate comparison with the juveniles. These data represent the total lipid fatty acid composition of each blood sample. Relative lipid concentration was calculated by multiplying the total lipid fatty acid compositional analysis (wt %) by the NEFA concentrations measured in that respective blood sample. Plasma NEFA concentrations in juvenile Steller sea lions ranged from 1.2 [plus or minus] 0.51 mM to 3.7 [plus or minus] 0.69 during fasting and was within the range of fasting phocids. Concentrations of NEFAs in the sub-adult Steller sea lions ranged from 1.00 mM up to 9.70 mM and were generally higher than fasting phocids. The wt % of only one fatty acid (20:0) was significantly different between the breeding and non-breeding season in fasting juveniles. However, the wt % of seven fatty acids changed significantly during fasting in the juveniles and five of these were most significant in separating the beginning and end of the fasts using principal components analysis. In contrast, the wt % of 10 fatty acids were significantly different during the breeding and non-breeding season fasts of the sub-adults. Additionally, the wt % of 10 fatty acids changed significantly during fasting in the sub-adults and four of these (16:1n-7, 18:2n-6, 20:0, and 20:1n-9) were most significant in separating the beginning and end of the fasts using principal components analysis. These trends reveal the physiological differences between the juvenile and sub-adult Steller sea lions and suggest that the sub-adults may be better physiologically and metabolically adapted to fast than the juveniles in this study.
|
22 |
The Influence of Disease and Climate on Pinniped Species at Local and Regional ScalesDixon, Katherine P. 01 June 2017 (has links)
No description available.
|
23 |
The multi-factorial aetiology of urogenital carcinoma in the California sea lion (Zalophus californianus) : a case-control studyBrowning, Helen M. January 2014 (has links)
California sea lions (CSLs) have an unusually high occurrence of urogenital cancer (UGC), with studies revealing metastatic carcinoma in 26 % of CSLs admitted to a rehabilitation centre between 1998 and 2012. It is likely that the aetiology of this disease is multi-factorial as genetics, viral infection and exposure to contaminants have been associated with this cancer to date. The goal of this study was to investigate the association of a number of factors using a case-control study design on animals admitted to a rehabilitation centre. The study additionally concentrates on two main areas; (i) genetic factors and (ii) the presence of herpesvirus. Previous investigations identified cancer to be more likely in animals with specific microsatellite alleles. In the present study genotyping of CSLs at three microsatellite loci revealed that homozygosity at one marker (Pv11) was significantly associated with the presence of the disease. Pv11 was found to be located within a gene called heparanase 2 (HPSE2) and investigations into the expression of its protein revealed differences according to Pv11 genotype. The presence of herpesvirus was investigated by two PCR methods and identified the gammaherpesvirus OtHV-1. The results of the two methods were contradictory with one method identifying a highly significant relationship between the presence of OtHV-1 and UGC whereas the other did not. Complicating factors such as potential differences in sensitivity of the tests along with the possible presence of closely related viruses or variants of OtHV-1 may explain this. The availability of necropsy data for the CSLs in the study allowed the inclusion of body condition data in the statistical analysis to evaluate other potential risk factors. Final analysis revealed the presence of three risk factors; Pv11 genotype, OtHV-1 presence and thinner blubber. This study is the largest study undertaken so far in order to investigate the involvement of risk factors associated with UGC in the CSL and supports a multi-factorial aetiology of this disease.
|
24 |
Causes of neonatal mortality in the New Zealand sea lion (Phocarctos Hookeri) : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Veterinary Pathology at Massey University, Palmerston North, New ZealandCastinel, Aurelie Unknown Date (has links)
As part of a health survey of New Zealand sea lions (Phocarctos hookeri) on Enderby Island, Auckland Islands (50°30’S, 166°17’E), neonatal mortality was continuously monitored at the Sandy Bay Beach rookery, from 1998/1999 to 2004/2005. The primary causes of death were categorised as trauma (35%), bacterial (24%) and hookworm (13%) infections, starvation (13%) and stillbirth (4%). During the 2001/2002 and 2002/2003 breeding seasons, bacterial epidemics caused by Klebsiella pneumoniae increased mortality by three times the mean in non-epidemic years. Uncinaria spp. from New Zealand sea lion (NZSL) pups was described for the first time using morphometric criteria. It differed from the two species already described in pinnipeds, Uncinaria lucasi and Uncinaria hamiltoni, suggesting the existence of a different morphotype in NZSLs. A study on the epidemiology of hookworm infection showed that all pups up to at least three months of age harboured adult hookworms in their intestines and transmammary transmission was identified as the route of infection of NZSL pups. Uncinariosis as a primary cause of mortality was generally associated with anaemia, haemorrhagic enteritis and frank blood in the lumen. The relationship between hookworm burden and clinical disease could not be clearly established. The 2001/2002 and 2002/2003 bacterial epidemics at Sandy Bay Beach rookery were caused by a clonal strain of Klebsiella pneumoniae as verified by pulse-field gel electrophoresis and antimicrobial testing. Suppurative arthritis was the most common post-mortem diagnosis during the two epidemic seasons. Internal lesions were consistent with septicaemia, which explained the wide range of organs from which the pathogen was grown in pure culture. A serological test investigating the exposure of NZSLs to Klebsiella spp. showed that the large majority of pups up to two months of age did not have any anti-Klebsiella antibodies, even after the epidemics, but that almost all the adults were seropositive. In addition, passive immunoglobulin (Ig) transfer from lactating females to neonates was examined by measuring IgG levels in pups and was very low compared to terrestrial mammals although similar to other pinniped neonates.
|
25 |
Environmental stochasticity and density dependence in animal population modelsSamaranayaka, Ari, n/a January 2006 (has links)
Biological management of populations plays an indispensable role in all areas of population biology. In deciding between possible management options, one of the most important pieces of information required by population managers is the likely population status under possible management actions. Population dynamic models are the basic tool used in deriving this information. These models elucidate the complex processes underlying the population dynamics, and address the possible consequences/merits of management actions. These models are needed to guide the population towards desired/chosen management goals, and therefore allow managers to make informed decisions between alternative management actions.
The reliability that can be placed on inferences drawn from a model about the fate of a population is undoubtedly dependent on how realistically the model represents the dynamic process of the population. The realistic representation of population characteristics in models has proved to be somewhat of a thorn in the side of population biologists. This thesis focuses in particular on ways to represent environmental stochasticity and density dependence in population models.
Various approaches that are used in building environmental stochasticity into population models are reviewed. The most common approach represents the environmental variation by changes to demographic parameters that are assumed to follow a simple statistical distribution. For this purpose, a distribution is often selected on the basis of expert opinion, previous practice, and convenience. This thesis assesses the effect of this subjective choice of distribution on the model predictions, and develops some objective criteria for that selection based on ecological and statistical acceptability. The more commonly used distributions are compared as to their suitability, and some recommendations are made.
Density dependence is usually represented in population models by specifying one or more of the vital rates as a function of population density. For a number of reasons, a population-specific function cannot usually be selected based on data. The thesis develops some ecologically-motivated criteria for identifying possible function(s) that could be used for a given population by matching functional properties to population characteristics when they are known. It also identifies a series of properties that should be present in a general function which could be suitable for modelling a population when relevant population characteristics are unknown. The suitability of functions that are commonly chosen for such purposes is assessed on this basis.
I also evaluate the effect of the choice of a function on the resulting population trajectories. The case where the density dependence of one demographic rate is influenced by the density dependence of another is considered in some detail, as in some situations it can be modelled with little information in a relatively function-insensitive way.
The findings of this research will help in embedding characteristics of animal populations into population dynamics models more realistically. Even though the findings are presented in the context of slow-growing long-lived animal populations, they are more generally applicable in all areas of biological management.
|
26 |
Metabolic and thermoregulatory capabilities of juvenile steller sea lions, Eumetopias jubatusHoopes, Lisa Ann 15 May 2009 (has links)
Maintaining thermal balance is essential for all homeotherms but can be especially challenging for pinnipeds which must regulate over a variety of ambient temperatures and habitats as part of their life history. Young pinnipeds, with their immature physiology and inexperience, have the additional expense of needing to allocate energy for growth while still dealing with a thermally stressful aquatic environment. With the immense environmental and physiological pressures acting on juvenile age-classes, declines in prey resources would be particularly detrimental to survival. The goal of the present study was to examine the metabolic and thermoregulatory capabilities of juvenile Steller sea lions to better understand how changing prey resources indirectly impact juvenile age classes. Data collected from captive Steller sea lions suggest that changes in body mass and body composition influence the thermoregulatory capabilities of smaller sea lions in stationary and flowing water. Serial thermal images taken of sea lions after emergence from the water show vasoconstriction of the flippers compared to the body trunk to help minimize heat loss. Despite this ability to vasoconstrict, sea lions in poor body condition displayed a reduced tolerance for colder water temperatures, suggesting that decreases in prey availability which affect insulation may limit survival in younger sea lions. If reductions in prey availability (i.e., nutritional stress) were impacting western Alaskan populations, a reduction in energetic expenditures would be expected in these animals to cope. Measures of resting metabolism in juvenile free-ranging Steller sea lions across Alaska showed no differences between eastern and western capture locations, suggesting no evidence of metabolic depression in declining western stocks of sea lions. Finally, thermal costs predicted by a thermal balance model were compared to actual costs measured in the present study. Model output reliably predicted thermoregulatory costs for juvenile Steller sea lions under certain environmental conditions. Basic physiological measurements combined with the predictive power of modeling will allow for greater exploration of the environmental constraints on juvenile Steller sea lions and identify directions of future study.
|
27 |
Range-use estimation and encounter probability for juvenile Steller sea lions (Eumetopias jubatus) in the Prince William Sound-Kenai Fjords region of AlaskaMeck, Stephen R. 21 March 2013 (has links)
Range, areas of concentrated activity, and dispersal characteristics for juvenile Steller sea lions Eumetopias jubatus in the endangered western population (west of 144° W in the Gulf of Alaska) are poorly understood. This study quantified space use by analyzing post-release telemetric tracking data from satellite transmitters externally attached to n = 65 juvenile (12-25 months; 72.5 to 197.6 kg) Steller sea lions (SSLs) captured in Prince William Sound (60°38'N -147°8'W) or Resurrection Bay (60°2'N -149°22'W), Alaska, from 2003-2011. The analysis divided the sample population into 3 separate groups to quantify differences in distribution and movement. These groups included sex, the season when collected, and the release type (free ranging animals which were released immediately at the site of capture, and transient juveniles which were kept in captivity for up to 12 weeks as part of a larger ongoing research program). Range-use was first estimated by using the minimum convex polygon (MCP) approach, and then followed with a probabilistic kernel density estimation (KDE) to evaluate both individual and group utilization distributions (UDs). The LCV method was chosen as the smoothing algorithm for the KDE analysis as it provided biologically meaningful results pertaining to areas of concentrated activity (generally, haulout locations). The average distance traveled by study juveniles was 2,131 ± 424 km. The animals mass at release (F[subscript 1, 63] = 1.17, p = 0.28) and age (F[subscript 1, 63] = 0.033, p = 0.86) were not significant predictors of travel distance. Initial MCP results indicated the total area encompassed by all study SSLs was 92,017 km², excluding land mass. This area was heavily influenced by the only individual that crossed over the 144°W Meridian, the dividing line between the two distinct population segments. Without this individual, the remainder of the population (n = 64) fell into an area of 58,898 km². The MCP area was highly variable, with a geometric average of 1,623.6 km². Only the groups differentiated by season displayed any significant difference in area size, with the Spring/Summer (SS) groups MCP area (Mdn = 869.7 km²) being significantly less than that of the Fall/Winter (FW) group (Mdn = 3,202.2 km²), U = 330, p = 0.012, r = -0.31. This result was not related to the length of time the tag transmitted (H(2) = 49.65, p = 0.527), nor to the number of location fixes (H(2) = 62.77, p = 0.449). The KDE UD was less variable, with 50% of the population within a range of 324-1,387 km2 (mean=690.6 km²). There were no significant differences in area use associated with sex or release type (seasonally adjusted U = 124, p = 0.205, r = -0.16 and U = 87, p = 0.285, r = -0.13, respectively). However, there were significant differences in seasonal area use: U = 328, p = 0.011, r = -0.31. There was no relationship between the UD area and the amount of time the tag remained deployed (H(2) = 45.30, p = 0.698). The kernel home range (defined as 95% of space use) represented about 52.1% of the MCP range use, with areas designated as "core" (areas where the sea lions spent fully 50% of their time) making up only about 6.27% of the entire MCP range and about 11.8% of the entire kernel home range. Area use was relatively limited – at the population level, there were a total of 6 core areas which comprised 479 km². Core areas spanned a distance of less than 200 km from the most western point at the Chiswell Islands (59°35'N -149°36'W) to the most eastern point at Glacier Island (60°54'N -147°6'W). The observed differences in area use between seasons suggest a disparity in how juvenile SSLs utilize space and distribute themselves over the course of the year. Due to their age, this variation is less likely due to reproductive considerations and may reflect localized depletion of prey near preferred haul-out sites and/or changes in predation risk.
Currently, management of the endangered western and threatened eastern population segments of the Steller sea lion are largely based on population trends derived from aerial survey counts and terrestrial-based count data. The likelihood of individuals to be detected during aerial surveys, and resulting correction factors to calculate overall population size from counts of hauled-out animals remain unknown. A kernel density estimation (KDE) analysis was performed to delineate boundaries around surveyed haulout locations within Prince William Sound-Kenai Fjords (PWS-KF). To closely approximate the time in which population abundance counts are conducted, only sea lions tracked during the spring/summer (SS) months (May 10-August 10) were chosen (n = 35). A multiple state model was constructed treating the satellite location data, if it fell within a specified spatiotemporal context, as a re-encounter within a mark-recapture framework. Information to determine a dry state was obtained from the tags time-at-depth (TAD) histograms. To generate an overall terrestrial detection probability 1) The animal must have been within a KDE derived core-area that coincided with a surveyed haulout site 2) it must have been dry and 3) it must have provided at least one position during the summer months, from roughly 11:00 AM-5:00 PM AKDT. A total of 10 transition states were selected from the data. Nine states corresponded to specific surveyed land locations, with the 10th, an "at-sea" location (> 3 km from land) included as a proxy for foraging behavior. A MLogit constraint was used to aid interpretation of the multi-modal likelihood surface, and a systematic model selection process employed as outlined by Lebreton & Pradel (2002). At the individual level, the juveniles released in the spring/summer months (n = 35) had 85.3% of the surveyed haulouts within PWS-KF encompass KDE-derived core areas (defined as 50% of space use). There was no difference in the number of surveyed haulouts encompassed by core areas between sexes (F[subscript 1, 33] << 0.001, p = 0.98). For animals held captive for up to 12 weeks, 33.3% returned to the original capture site. The majority of encounter probabilities (p) fell between 0.42 and 0.78 for the selected haulouts within PWS, with the exceptions being Grotto Island and Aialik Cape, which were lower (between 0.00-0.17). The at-sea (foraging) encounter probability was 0.66 (± 1 S.E. range 0.55-0.77). Most dry state probabilities fell between 0.08-0.38, with Glacier Island higher at 0.52, ± 1 S.E. range 0.49-0.55. The combined detection probability for hauled-out animals (the product of at haul-out and dry state probabilities), fell mostly between 0.08-0.28, with a distinct group (which included Grotto Island, Aialik Cape, and Procession Rocks) having values that averaged 0.01, with a cumulative range of ≈ 0.00-0.02 (± 1 S.E.). Due to gaps present within the mark-recapture data, it was not possible to run a goodness-of-fit test to validate model fit. Therefore, actual errors probably slightly exceed the reported standard errors and provide an approximation of uncertainties. Overall, the combined detection probabilities represent an effort to combine satellite location and wet-dry state telemetry and a kernel density analysis to quantify the terrestrial detection probability of a marine mammal within a multistate modeling framework, with the ultimate goal of developing a correction factor to account for haulout behavior at each of the surveyed locations included in the study. / Graduation date: 2013
|
28 |
Holistic approach to the evaluation of the anthropocentric influence on domoic acid production and the corresponding impact on the California Sea Lion (Zalophus californianus) populationRieseberg, Ashley January 2012 (has links)
Domoic acid (DA) is a neurotoxin produced by the harmful algae Pseudo-nitzschia that has been directly linked to mass stranding events of the California Sea Lion (CSL). The purpose of this paper is to review the anthropogenic influence on the production of this neurotoxin and examine how human activities are impacting this marine mammal species. A comprehensive and interdisciplinary literature review was conducted to evaluate the future sustainability of the CSL population. It was found that while Pseudo-nitzschia bloom developments are vulnerable to anthropogenic influences, the incontestable existence of natural contributing factors adds a certain complexity to the determination of causalities and the development of solutions. Strong evidence exists to show that DA can cause major and irreversible neurological damage in CSLs. Rehabilitation of DA-impacted CSLs is a polarizing issue in the U.S. and presents interesting implications for sustainable development. While the CSL population is currently healthy and plenteous, the strong abundance of future uncertainties warrants concern. A balance must be found between the involving social, economic, and environmental factors to ensure a promising future for the CSL species.
|
29 |
Metabolic and thermoregulatory capabilities of juvenile steller sea lions, Eumetopias jubatusHoopes, Lisa Ann 15 May 2009 (has links)
Maintaining thermal balance is essential for all homeotherms but can be especially challenging for pinnipeds which must regulate over a variety of ambient temperatures and habitats as part of their life history. Young pinnipeds, with their immature physiology and inexperience, have the additional expense of needing to allocate energy for growth while still dealing with a thermally stressful aquatic environment. With the immense environmental and physiological pressures acting on juvenile age-classes, declines in prey resources would be particularly detrimental to survival. The goal of the present study was to examine the metabolic and thermoregulatory capabilities of juvenile Steller sea lions to better understand how changing prey resources indirectly impact juvenile age classes. Data collected from captive Steller sea lions suggest that changes in body mass and body composition influence the thermoregulatory capabilities of smaller sea lions in stationary and flowing water. Serial thermal images taken of sea lions after emergence from the water show vasoconstriction of the flippers compared to the body trunk to help minimize heat loss. Despite this ability to vasoconstrict, sea lions in poor body condition displayed a reduced tolerance for colder water temperatures, suggesting that decreases in prey availability which affect insulation may limit survival in younger sea lions. If reductions in prey availability (i.e., nutritional stress) were impacting western Alaskan populations, a reduction in energetic expenditures would be expected in these animals to cope. Measures of resting metabolism in juvenile free-ranging Steller sea lions across Alaska showed no differences between eastern and western capture locations, suggesting no evidence of metabolic depression in declining western stocks of sea lions. Finally, thermal costs predicted by a thermal balance model were compared to actual costs measured in the present study. Model output reliably predicted thermoregulatory costs for juvenile Steller sea lions under certain environmental conditions. Basic physiological measurements combined with the predictive power of modeling will allow for greater exploration of the environmental constraints on juvenile Steller sea lions and identify directions of future study.
|
30 |
Human impacts on Australian sea lions, Neophoca cinerea, hauled out on Carnac Island (Perth, Western Australia): implications for wildlife and tourism managementjporsini@bigpond.net.au, Jean-Paul Orsini January 2004 (has links)
Over the last 15 years, pinniped tourism has experienced a rapid growth in the Southern Hemisphere, and particularly in Australia and New Zealand where at least four sites attract more than 100,000 visitors per year. Tourism focused on the Australian sea lion (Neophoca cinerea), a protected species endemic to Australia, occurs in at least nine sites in South Australia and Western Australia. Australian sea lions haul out on several offshore islands in the Perth region.
Carnac Island Nature Reserve is one of the main sites where people can view sea lions near Perth, either during recreational activities or on commercial tours.
This study sought: (1) to investigate the potential impact of human visitors on Australian sea lions hauled out on Carnac Island, (2) to consider implications of the results for the management of Carnac Island Nature Reserve, and (3) to examine under which conditions tourism and recreation around sea lions can be sustained in the long term.
Sea lion numbers, rate of return to the site, behavioural response to human presence and incidents of disturbances of sea lions by visitors were recorded over a period of four months on Carnac Island. A survey of 207 visitors was also carried out.
Findings indicated that there were two main types of human impacts on the sea lions:
A specific state of sea lion vigilance induced by low level, but ongoing, repetitive disturbances from human presence, sustained at various approach distances ranging to more than 15 m, vigilance that is different from the behaviour profile observed in the absence of human disturbance,
Impacts resulting from incidental direct disturbances of sea lions by visitors from inappropriate human recreational activities or from visitors trying to elicit a more active sea lion response than the usual sleeping or resting behaviour on display; these impacts included sea lions retreating and leaving the beach, or displaying aggressive behaviour.
Impacts on sea lions from these disturbances may range from a potential sea lion physiological stress response to sea lions leaving the beach, a reduction in the time sea lions spend hauling out, and, in the longer term, the risk of sea lions abandoning the site altogether. Repeated instances of visitors (including unsupervised young children) approaching sea lions at very short distances of less than 2.5 m represented a public safety risk.
Results also indicated that (1) the numbers of sea lions hauled out and their rate of return to the beach did not appear to be affected by an increase in the level of human visitation (although longer-term studies would be required to confirm this result); and (2) there appeared to be a high turnover rate of sea lions at the site from day to day, suggesting that there are frequent arrivals and departures of sea lions to and from Carnac Island.
The visitor survey indicated that many visitors to Carnac Island had a recreational focus that was not primarily directed towards sea lion viewing (incidental ecotourists). Although many visitors witnessed incidental disturbance caused by humans to sea lions, they did not seem to recognise that they themselves could disturb sea lions through their mere presence. Visitors also seemed to have a limited awareness of the safety risk posed by sea lions at close range. Visitors expressed support for the presence of a volunteer ranger on the beach and for more on-site information about sea lions. Finally, visitors indicated that they greatly valued their sea lion viewing experience. It is anticipated that the continued increase in visitation to Carnac Island from recreation and from tourism will result in intensified competition for space between humans and sea lions. Long-term impacts of human disturbances on sea lions are unknown, but a physiological stress response and/or the abandonment of haulout sites has been observed in other pinniped species.
The findings of this study highlight the need to implement a long-term strategy to reduce disturbance levels of sea lions by visitors at Carnac Island to ensure that tourism and recreation around sea lions can be sustained in the long term. Recommendations include measures to control visitor numbers on the island through an equitable allocation system between various user groups, the development of on-site sea lion interpretation and a public education and awareness program, the setting up of a Sea Lion Sanctuary Zone on the main beach, ongoing monitoring of sea lion and visitor numbers and other data, and a system of training and accreditation of guides employed by tour operators.
|
Page generated in 0.0489 seconds