• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New methodologies for evaluating human biodynamic response and discomfort during seated whole-body vibration considering multiple postures

DeShaw, Jonathan 01 May 2013 (has links)
The lack of adequate equipment and measurement tools in whole-body vibration has imposed significant constraints on what can be measured and what can be investigated in the field. Most current studies are limited to single direction measurements while focusing on simple postures. Besides the limitation in measurement, most of the current biomechanical measures, such as the seat-to-head transmissibility, have discrepancies in the way they are calculated across different labs. Additionally, this field lacks an important measure to quantify the subjective discomfort of individuals, especially when sitting with different postures or in multiple-axis vibration. This work begins by explaining discrepancies in measurement techniques and uses accelerometers and motion capture to provide the basis for more accurate measurement during single- and three-dimensional human vibration responses. Building on this concept, a new data collection method is introduced using inertial sensors to measure the human response in whole-body vibration. The results indicate that measurement errors are considerably reduced by utilizing the proposed methods and that accurate measurements can be gathered in multiple-axis vibration. Next, a biomechanically driven predictive model was developed to evaluate human discomfort during single-axis sinusoidal vibration. The results indicate that the peak discomfort can be captured with the predictive model during multiple seated postures. The predictive model was then modified to examine human discomfort to whole-body vibration on a larger scale with random vibrations, multiple postures, and multiple vibration directions. The results demonstrate that the predictive measure can capture human discomfort in random vibration and during varying seated postures. Lastly, a new concept called effective seat-to-head transmissibility is introduced, which describes how to combine the human body's biodynamic response to vibration from multiple directions. This concept is further utilized to quantify the human response using many different vibration conditions and seated postures during 6D vibration. The results from this study demonstrate how complicated vibrations from multiple-input and multiple-output motions can be resolved into a single measure. The proposed effective seat-to-head transmissibility concept presents an objective tool to gain insights into the effect of posture and surrounding equipment on the biodynamic response of the operators. This thesis is timely as advances in seat design for operators are increasingly important with evolving armrests, backrests, and seat suspension systems. The utilization of comprehensive measurement techniques, a predictive discomfort model, and the concept of effective seat-to-head transmissibility, therefore, would be beneficial to the fields of seat/equipment design as well as human biomechanics studies in whole-body vibration.
2

Interaction between humans and car seats : studies of occupant seat adjustment, posture, position, and real world neck injuries in rear-end impacts

Jonsson, Bertil January 2008 (has links)
Background: The latest generation of rear-end whiplash protection systems, as found in the WHIPS Volvo and SAHR Saab, have reduced injury rates by almost 50% in comparison with the previous generation of seat/head restraint systems. Occupant behaviour, such as seated posture and seat adjustment settings, may affect the injury risk. Method: Five studies were conducted. Studie I was an injury outcome study based on insurance data. Studies II-IV investigated seat adjustment, occupant backset, and cervical retraction for drivers and occupants in different postures and positions in the car, during stationary and driving conditions. Study V compared the occupant data from studies II and III with a vehicle testing tool, the BioRID dummy, using the protocols of the ISO, RCAR, and the RCAR-IIWPG. Results: Female drivers and passengers had a threefold increased risk for medically-impairing neck injury in rear-end impacts, compared to males. Driver position had a double risk compared with front passenger seat position. Female drivers adjusted the driver seat differently to male drivers; they sat higher and closer to the steering wheel and with more upright back support. The volunteers also adjusted their seat differently to the ISO, RCAR, and RCAR-IIWPG protocol settings; both sexes sat further away from the steering wheel, and seat back angle was more upright then in the protocols. In stationary cars, backset was highest in the rear seat position and lowest in the front passenger seat position. Males had a larger backset than females. Cervical retraction decreased and backset increased for both sexes when posture changed from self-selected posture to a slouched posture. The BioRID II dummy was found to represent 96th percentile female in stature, and a 69th percentile female in weight in the volunteer group. Conclusions: Risks in car rear-end impacts differ by sex and seated position. This thesis indicates the need for a 50th percentile female BioRID dummy and re-evaluation of the ISO, RCAR, and RCAR-IIWPG protocols, and further development of new safety systems to protect occupants in rear-end impacts.
3

Novel methodologies for three-dimensional modelling of subject specific biomechanics : application to lumbopelvic mechanics in sitting and standing

Cargill, Sara C. January 2008 (has links)
This project presented a biomechanical model of the lumbosacral spine and pelvis, including novel methodologies associated with the measurement of human mechanics. This research has, for the first time, produced accurate three-dimensional geometric models of the human skeleton from living subjects using magnetic resonance imaging technology, enabling the prediction of physiological muscle action within individuals. The model was used to examine changes in the mechanics of the lumbopelvic musculoskeletal system between the standing and seated postures due to the increasing prevalence of the seated posture in the work and home environment. The outcomes of this research included a novel bone wrapping algorithm used to describe the effect of muscle-bone interactions. a novel method for creating three-dimensional in vivo spinal reconstructions using MRI, three dimensional in vivo helical axis measurements and subject specific normalised moment data.
4

Expanding Seated Posture for Individuals with Trunk Paralysis through Feedback Control of Peripheral Nerve Stimulation

Friederich, Aidan 26 May 2023 (has links)
No description available.
5

Trunk Muscle EMG in a Specially Designed Virtual Reality Motion Simulator

Shafeie, Mohsen 07 July 2014 (has links)
Virtual reality (VR) has become an important tool in the study of human balance. It has also been used as a training tool for seated balance and assistive mobility devices. The objective was to design a system that can be used to investigate the effect of VR on trunk muscles during perturbed sitting and perform a preliminary study with two subjects. A spherical system was designed that rotated 26º in the pitch and roll plane at three speeds. The corresponding muscle activity was recorded using EMG in the presence and absence of VR during perturbed sitting. The design was capable of performing the required motions. The results showed a maximum of 31.8% and a minimum of 3.66% muscle activity, relative to maximum voluntary contraction. Our findings suggested that our developed system was successfully able to detect a noticeable effect of VR under perturbed sitting on the subjects’ EMG responses.

Page generated in 0.0683 seconds