1 |
The Rate of Intramuscular Tissue Temperature Reduction Between Wetted Ice with Elastic Wrap and Game Ready®Anderson, Courtney Rae January 2020 (has links)
In recent years, the Game Ready® unit has become a popular cryotherapy modality to treat musculoskeletal injuries. The purpose of this study was to determine which cryotherapy method, wetted ice bag with elastic wrap or Game Ready®, decreases triceps surae intramuscular tissue temperature the most during a 30-minute treatment. The independent variables were the cryotherapy modalities (Game Ready® and wetted ice with elastic wrap) and time (baseline, 10, 20, and 30 minutes). Twenty patients participated in this study. Wetted ice with elastic wrap decreased tissue temperatures significantly greater than Game Ready® at 20 minutes (P = 0.03), and 30 minutes (P = 0.02). Since wetted ice with elastic wrap produced a greater and faster decline in intramuscular tissue temperature compared to Game Ready® on medium pressure, this cryotherapy modality should be utilized in the immediate care phase of the injury repair process.
|
2 |
The effects of T-lymphocytes on secondary neurodegeneration and recovery of function after experimental spinal contusion injuryJones, T. Bucky 29 September 2004 (has links)
No description available.
|
3 |
Characterization of NeuN expression in the mouse neuronal NSC-34 cell line using RT-qPCR, immunological staining and siRNA-mediated gene suppressionHallgren, Henrik January 2019 (has links)
Background: Acute spinal trauma is followed by a secondary injury that causes additional damage to the tissue. The mouse neuronal hybrid cell line NSC-34 is planned for studies regarding this process, wherefore the cell line needed to be established in the laboratory and a proof-of-concept study needed to be performed. A suitable target gene for this study was Neuronal Nucleus (NeuN), a neuronal marker expressed in nearly all neuronal cells although not yet studied in NSC-34. Aim: The aim of this project was to characterize the expression of NeuN in differentiated and undifferentiated NSC-34 cells and silence gene expression by using siRNA. Methods: RT-qPCR was used to measure NeuN expression during passages 5 to 15 and a comparison was performed between one early and one late passage. Lipofectamine® RNAiMAX was used for siRNA-treatment in different concentrations and several different medium compositions were tested as differentiation media. Results: NeuN was expressed in passages 5 to 15, with decreased expression levels in passage 13 (ΔCt 15.36 ± 0.16) compared to passage 5 (ΔCt 15.09 ± 0.16), p < 0.05. The expression levels did not change after differentiation. siRNA-treatment yielded knockdown when using high concentrations of the reagent (p < 0.05). Conclusion: NeuN was expressed in a stable, low level throughout passages 5 to 15 with a slightly decreased expression during later passages and no change after differentiation. The siRNA-treatment suppressed gene expression, although further optimization is needed to increase the suppression.
|
4 |
Cell based therapy following cortical injury in Rhesus monkeys reduces secondary injury and enhances neurorestorative processesOrczykowski, Mary Elizabeth 01 November 2017 (has links)
While physical rehabilitation facilitates some recovery, it is uncommon for patients to recover completely from stroke. Cell based therapies derived from stem cells have produced promising results in enhancing recovery in pre-clinical studies, but the mechanism is not yet completely understood. We previously evaluated human umbilical tissue-derived cells (hUTC) in our non-human primate model of cortical injury, limited to the hand area of primary motor cortex. hUTC treatment, injected intravenously 24 hours after injury, resulted in significantly greater recovery of fine motor function compared to treatment with vehicle. Based on these striking findings, in the current study, we investigated the hypothesis that hUTC treatment leads to functional recovery through reducing cytotoxic responses and enhancing neurorestorative processes following cortical injury. Brain sections were assessed using histological techniques to quantify perilesional oxidative damage, hemosiderin accumulation, microglial activation, Betz cell number, synaptic density, and astrocytic complexity. Brain sections outside of the primary area of injury were also assessed for microglial activation in white matter pathways, cell activation through c-Fos in premotor cortices, and neurogenesis in neurogenic niches. Finally, blood samples from throughout the recovery period and CSF samples from 16 weeks after injury were analyzed for BDNF levels. In the perilesional area, hUTC treatment was associated with lower oxidative damage and hemosiderin accumulation, but not with a difference in microglial activation. hUTC also resulted in a trend toward higher astrocyte complexity and synaptic density in the lesion area, but no difference in ipsilesional Betz cell number. Further, hUTC treatment led to more microglia in white matter pathways, higher c-Fos activation in ventral premotor cortex, and a trend toward higher neurogenesis in the hippocampus. Finally, BDNF levels were higher in blood with hUTC treatment one week after injury, but there was no change beyond one week in blood serum or in CSF, when compared with vehicle. Taken together, these results suggest that hUTC treatment modulates immune responses, limits perilesional damage and cell death, enables neuroplasticity and reorganization, and enhances acute neurotrophic factor secretion. While many cell therapies are currently undergoing clinical trials, this study advances our understanding of the mechanism of cell based therapies.
|
5 |
Multimodales zerebrales Monitoring bei schweren Schädel-Hirn-TraumaKiening, Karl Ludwig 06 January 2004 (has links)
Die vorliegende Arbeit setzt sich mit der klinischen Anwendung von zwei neuen Monitoringparametern - Hirngewebe-PO2 in der weißen Substanz (PtiO2), und online intrakranielle Compliance (cICC) - im Rahmen des multimodalen zerebralen Monitorings bei Patienten mit schwerem Schädel-Hirn-Trauma auseinander. Bezüglich des PtiO2 konnte erstmalig eine Hypoxiegrenze von 8,5 mmHg durch vergleichende Messungen mit der jugular-venösen Oxymetrie ermittelt werden. Ferner konnte gezeigt werden, dass, bei intakter zerebraler Autoregulation, der PtiO2 bei einem zerebralen Perfusionsdruck (CPP) >60 mmHg über dem pathologischen Grenzwert liegt. Eine forcierte bzw. moderate Hyperventilation hingegen, induziert, trotz adäquatem CPP, eine Reduktion des PtiO2, die im individuellen Fall zur Unterschreitung des hypoxischen Grenzwerts führt. Das PtiO2-Verfahren ist somit v.a. dann indiziert, wenn eine Hyperventilationstherapie zur Kontrolle eines pathologisch erhöhten intrakraniellen Drucks (ICP) eingesetzt werden muss. PtiO2-Messwerte bedürfen aber einer kritischen Interpretation, sofern der PtiO2-Katheter in der Nähe einer Kontusion lokalisiert ist. Hier ist der PtiO2, als Ausdruck des perikontusionell reduzierten zerebralen Blutflusses, signifikant erniedrigt und somit nicht repräsentativ für die globale zerebrale Oxygenierung. Für die cICC konnte ebenfalls ein pathologischer Grenzwert angegeben werden (0,5 ml/mmHg). Die Dateninterpretation ist aber, durch die offensichtliche Abnahme der intrakraniellen Compliance mit zunehmendem Lebensalter, erschwert. Ferner bleibt die cICC bzgl. ihrer Datenqualität weit hinter etablierten Parametern zurück, so dass ihre routinemäßige Anwendung zum jetzigen Zeitpunkt nicht zu empfehlen ist. Basierend auf unseren Untersuchungen hat sich das PtiO2-Verfahren international als Langzeitmonitoring der zerebralen Oxygenierung etablieren können. Die cICC hingegen bedarf umfangreicher Systemänderungen, um eine frühe Risikoabschätzung bezüglich eines drohenden ICP-Anstiegs suffizient zu ermöglichen. / The aim of our clinical and experimental studies was to evaluate two new monitoring parameters -brain tissue PO2 (PtiO2) of cerebral white matter, and online intracranial compliance (cICC) - in patients with severe traumatic brain injury by using a computerized multimodal cerebral monitoring system. By comparing PtiO2 with jugular vein oxygen saturation, we were able to establish the hypoxic PtiO2-threshold of 8.5 mmHg. Moreover, we demonstrated that in case of an intact cerebral autoregulation, PtiO2 was well above the hypoxic threshold as long as cerebral perfusion pressure (CPP) stayed above 60 mmHg. However, forced or moderate hyperventilation carried an individual risk of a PtiO2 reduction below the hypoxic threshold despite an adequate CPP. PtiO2 monitoring is therefore particularly indicated, if hyperventilation therapy is necessary for control of pathologically increased intracranial pressure (ICP). However, PtiO2-values needed critical interpretation, if catheters were placed close to contusions. In these situations, PtiO2 has been shown to be significantly reduced, presumably due to low peri-contusional blood flow. Thus, such PtiO2 measurements cannot be taken as representatives of global cerebral oxygenation. In cICC monitoring, a pathological threshold was accomplished (0.5 ml/mmHg). Due to a stepwise cICC reduction with increasing age, cICC data interpretation was aggravated, and cICC data quality was significantly reduced in comparison to other established monitoring parameters. Hence, a routine use of this device is currently not advisable. Based on ours results, the PtiO2-methode has been established internationally as an ideal tool for long-term monitoring of cerebral oxygenation. On the contrary, the cICC system needs extensive alterations in order to anticipate sufficiently pathological ICP rises.
|
Page generated in 0.0485 seconds