• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1054
  • 462
  • 146
  • 135
  • 63
  • 51
  • 41
  • 37
  • 19
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • Tagged with
  • 2570
  • 773
  • 367
  • 288
  • 277
  • 258
  • 245
  • 193
  • 189
  • 183
  • 163
  • 149
  • 149
  • 141
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1041

Simulation 3D des ondes de batillage générées par le passage des bateaux et des processus associée de transport de sédiments / 3D numerical modelling of shipwaves and associated sediment transport

Ji, Shengcheng 15 March 2013 (has links)
Les ondes de batillage générées par l’avancement des bateaux détruisent les rives des voies navigables et accélèrent les phénomènes d’érosion aussi bien au niveau des berges qu’au niveau du fond du canal. Leurs caractéristiques cinématiques dépendent de la vitesse, de l’enfoncement, du chargement du bateau et également de la profondeur de la voie navigable. En outre, les masses d’eau accélérées par l’immersion des bateaux et par leur système propulsif, induisent la remise en suspension d’une grande quantité de sédiments et provoquent l’érosion du fond de la voie navigable.Dans cette thèse, un modèle numérique 3D est présenté pour simuler la génération de ces ondes de batillage. Ce modèle, basé sur les équations de Navier-Stokes (RANS), a été couplé à un modèle d’advection-diffusion 3D pour caractériser la répartition et le mode de transport sédimentaire au passage du bateau. Ce couplage est mis en oeuvre avec prise en compte des effets des hélices du système propulsif du bateau. / Ship-generated waves in restricted waterways lead to the stream banks erosion and cause environmental damage which harms fish, plants, benthos, plankton, etc. They also alter the channel morphology because of the resuspension and transport of bed material by accelerated flows caused by moving-ships. The magnitude of these waves depends mainly on the geometrical and kinematical parameters of the convoy.The objective of this study is to predict the relationship between these geometrical and kinematical parameters and the amplitude of ship-generated waves as well as the water plane drawdown. Numerical simulations are conducted by solving the 3-dimensional Navier-Stokes equations along with the k-ε model for turbulent processes. The results are compared firstly with the empirical models and secondly with experimental measurements performed by the French Compagnie Nationale of Rhône (CNR). The exitance of the propeller increases the sediment in suspension. Therefore, the relationships between the re-suspended sediments and the advancing speeds of the convoy, the wakes generated by the moving convoy, as well as the number of barges are studied by adding 3D advection-diffusion equation and a propeller model.
1042

Analysis of energy gradients and sediment loads occurring in the Irish Creek Watershed located in northeast Kansas

Sullivan, Justine Danielle January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Philip Barnes / Sediment is a large pollutant concern for the United States and is a major impairment source in water bodies (MARC 2013). Rivers and streams assessed in Kansas resulted in 87.8% being considered impaired, as well as 97.8% of the assessed lakes, reservoirs, and ponds (EPA 2012d). Tuttle Creek Reservoir is filling with sediment faster than any other federal reservoir in the region. Due to the importance of Tuttle Creek Reservoir, limiting the water impairments has been made a priority. The tributaries feeding the reservoir are all considered impaired, and TMDLs should be developed to limit the amount of sediment allowed in the water body. This study focuses on the stream energy and sediment loads occurring in a watershed in northeast Kansas over a six year period. When bankfull conditions occur, significant amounts of work are performed on the stream and excessive erosive forces may occur. The estimated bankfull discharge was 6.5 m3/s, and this event occurred every year except in 2012. At the same location the bankfull discharge was estimated, automated and grab water samples were collected and stream power was calculated. The samples were analyzed for total suspended sediment, total nitrogen, and total phosphorus, and the total annual loads were estimated. The total sediment load occurring in the watershed was 10,298,283 kilograms. The nutrient loads occurring were 78,213 kg of TN and 22,625 kg TP. Elevations were measured at equal intervals in a sub-watershed. Energy gradients were calculated, and it was observed that many of the gradients could create favorable conditions for sediment erosion to occur. The stream power estimate was 26.85 kg/m/s. At this stage larger sediment particles and load could be transported. A gully formed by overland flow entering the stream was also measured to estimate amounts of sediment being contributed from gully side conveyances within the watershed. The estimated sediment loss from the gully was 1,693,899 kg. Results of this study could help improve water quality and help quantify the amount of sediment being carried from the watershed and streambanks, so BMPs and other design features may be implemented.
1043

GIS methods to implement sediment best management practices and locate ephemeral gullies

Daggupati, Naga Prasad January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Kyle Douglas-Mankin / Soil erosion is one of the most important of today’s global environmental problems. Over the past few decades, soil conservation practices were implemented to reduce soil erosion in the United States. However, excessive sediment still remains among the most prevalent water quality problems. Agricultural fields and in particular ephemeral gullies (EGs) are considered to be a major contributor of sediment. The overall goal of this study was to improve modeling utility to identify and quantify sources of sediment. Specific objectives were: (1) to develop and demonstrate a method of field-scale targeting using Soil and Water Assessment Tool (SWAT) and to use this method as a targeted, flexible approach to pay explicitly for sediment-yield reductions; (2) to evaluate topographic index models (Slope Area [SA], Compound Topographic Index [CTI], Slope Area Power [SAP] and Wetness Topographic Index [WTI]) and a physical-based model (Overland Flow Turbulent [OFT]) in predicting spatial EG location and lengths. Black Kettle Creek watershed was the focus of an innovative project to pay for modeled field sediment reductions. An Arc-Geographical Information System (GIS) tool bar was developed that post processed SWAT hydrologic response unit output to field boundaries and prepared maps of high-priority fields by sediment, total nitrogen, and total phosphorus and was demonstrated to be useful for field-scale targeting. Calibrated SWAT model was used to establish baseline sediment yields. Various Best Management Practices (BMPs) were simulated and payments to implement each BMP for a given field were calculated. This study helped to guide determination of appropriate farmer support payments and quantified the important influence of BMP type and site-specific conditions for use in targeting conservation practice funding to achieve maximum soil-loss reductions per dollar spent. Extreme care should be used in selecting the source of spatial model input data when using SWAT for field-level targeting. Automated geospatial models were developed in a GIS environment to spatially locate and derive length of EGs using topographic index and physical based models. EG predictions were better for the SA model among the four topographic index models tested. Individual calibration of topographic index model threshold for each application site was needed. An OFT model (physical based model), which utilized topography, precipitation, soil, landuse/landcover and SWAT-based runoff estimates, did not need individual site calibration, and may have broader applicability than empirical based models.
1044

Microbial Ecosystem Functions Along the Steep Oxygen Gradient of the Landsort Deep, Baltic Sea

Thureborn, Petter January 2016 (has links)
Through complex metabolic interactions aquatic microbial life is essential as a driver of ecosystem functions and hence a prerequisite for sustaining plant and animal life in the sea and on Earth. Despite its ecological importance, infor­mation on the complexity of microbial functions and how these are related to environmental conditions is limited. Due to climate change and eutrophication, marine areas facing oxygen depletion are increasing and predicted to continue to do so in the future. Vertically steep oxygen gradients are particularly pronoun­ced in the Baltic Sea. In this thesis, therefore, the ecosystem functions of micro­bial communities were investigated, using metagenomics, to understand how they were distributed along the steep oxygen gradient at the Landsort Deep, the deepest point of the Baltic Sea. Furthermore, microbial communities from the Lands­ort Deep transect were compared to microbial communities of other marine environments to establish whether the environment at this site resulted in a characteristic community. To reveal what microbial community functions and taxa were active in the anoxic sediment a metatranscriptomic approach was used. Results showed a marked effect of the coupled environmental parameters dissolved oxygen, salinity and temperature on distribution of taxa and par­ti­cularly community functions. Microbial communities showed functional capa­cities consistent with a copiotrophic life-style dependent on organic ma­terial sinking through the water column. The eutrophic condition with high organic load was further reflected in the metatranscriptome of the anoxic sedi­ment com­munity, which indicated active carbon mineralisation through ana­erobic hetero­trophic-autotrophic community synergism. New putative linkages between nitro­gen and- sulphur metabolisms were identified at anoxic depths. Further­more, viable Cyanobacteria in the anoxic sediment was evident from the tran­script analyses as another reflection of marine snow. High abundance and expres­­sion of integron integrases were identified as a charac­teristic feature of the Lands­ort Deep communities, and may provide these communities with a mech­an­ism for short-term-adaptation to environmental change. In summary, this thesis clearly documents what impact eutrophication and oxygen depletion have on microbial community functions. Furthermore, it specifically advances the mechanistic insight into microbial processes in anoxic deep-water sediment at both genomic and transcriptional level. Given the predicted progress of oxygen depletion in marine and brackish environments, this work advances information necessary to estimate effects on marine and in particular brackish ecosystem functions where anoxic conditions prevail. / Mikroorganismer är essentiella för fungerande ekosystemfunktioner i akvatiska miljöer och därmed en förutsättning för övrigt växt- och djurliv på vår planet. Trots deras ekologiska nyckelroll är kunskapen om mikroorganismernas funk­tion och komplexitet samt hur dessa är relaterade till miljön begränsad. På grund av eutrofiering och klimatförändringar har marina områden som lider av syrebrist ökat och en ytterligare utbredning av marina och bräckta områden med syrebrist är predicerad i framtiden. Stora områden av Östersjön kännetecknas av vertikala syregradienter med syresatt ytvatten och anoxiskt bottenvatten. I denna avhandling undersöktes därför med metagenomik hur mikrobiella ekosystems funktioner var utbredda längs den vertikala syregradienten i Östersjöns djupaste del, Landsortsdjupet. Dessutom jämfördes de mikrobiella samhällena från Lands­­­ortsdjupet med mikrobiella samhällen från andra marina miljöer för att utröna om den karakteristiska miljön i Landsortsdjupet återspeglade de mikro­biella samhällen som lever där. För att undersöka vilka mikroorganismer samt vilka mikrobiella ekosystemfunktioner som var aktiva i det anoxiska sedimentet i Lands­ortsdjupet användes metatranskriptomik. Resultaten visade en stark kor­re­lation mellan miljöparametrarna syrehalt, salinitet och temperatur och för­del­ningen av mikrobiell taxa och i synnerhet mikrobiell funktion längs Lands­orts­djupets transekt. De mikrobiella samhällena uppvisade en funktionell kapa­citet förenlig med en livsstrategi beroende av organiskt material som sjunker genom vattenkolonnen som en konsekvens av eutrofiering. Eutrofa förhållanden med hög halt av organiskt material var även återspeglad i metatranskriptomet från det anoxiska sedimentet, som indikerade aktiv mineralisering av organiskt kol genom anaerob heterotrof-autotrof synergism. Nya möjliga kopplingar mellan kväve- och svavelmetabolism identifierades i det anoxiska vattnet. Vidare visade resultat från metatranskriptom-analys att livsdugliga cyanobakterier var abun­danta i det mörka och anoxiska sedimentet, vilket även detta kan vara en konse­kvens av sjunkande organiskt material. Hög abundans och hög transkribering av integrongener kunde identifieras som ett karakteristiskt kännetecken hos de mikro­biella samhällena i Landsortsdjupet vilket skulle kunna förse dem med en me­kanism för anpassning till miljöförändringar. Sammanfattningsvis dokumen­terar denna avhandling tydligt vilken påverkan eutrofiering och syrebrist har på mikrobiella funktioner. Dessutom för den specifikt kunskapen om mikrobiella processer i anoxiska djupvattensediment framåt på både genom- och transkrip­tions­nivå. Mot bakgrund av en predicerad ökning av syrebristen i marina mil­jöer, bidrar denna avhandling med information som är viktig för att kunna förutse vilka effekter anoxiska förhållanden kan komma att få på ekosystemfunktioner i marina miljöer och i brackvattenmiljöer i synnerhet.
1045

Wave and Longshore Transport Studies on Lake Pontchartrain

Gala, Satya Sumanth Reddy 21 May 2004 (has links)
A wind-wave model for Lake Pontchartrain has been developed. This model uses the probability data obtained from the frequency analysis of wind information from the four weather monitoring stations in Lake Pontchartrain. For any given season and any given location, this model generates statistical results of wave heights, wave periods and long-shore sediment transport in 10 degree directional bins along the shoreline of the Lake. This model can be used as an effective tool for planning, construction and maintenance of beaches along the shores of Lake Pontchartrain.
1046

Differential Sedimentation In A Mississippi River Crevasse Splay

Esposito, Christopher 20 May 2011 (has links)
In this study the patterns of sediment transport and deposition in the channels and receiving basin of a crevasse splay in the modern Mississippi River delta are examined, with emphasis on the development of a distributary mouth bar. Simultaneous hydroacoustic and optical measurements on the mouth bar show that the bar conforms to the progradational stage of an existing conceptual model of mouth bar development. This is confirmed by cores dated using Beryllium-7, which provides a record of the deposition on the bar over a 90-day period. Stratigraphic data from cores obtained on the bar are used to extend the conceptual model to account for variable riverine inputs. A numerical model, developed and validated using field data is capable of representing the fundamental sedimentary processes responsible for mouth bar progradation. These results will be of interest to coastal geologists, engineers and coastal managers alike.
1047

Geomorphic Evolution of Caminada Pass in Southeast Louisiana.

Spizale, Jordyn A 06 August 2013 (has links)
Tidal inlets play a significant role in barrier island sustainability along the barrier islands of southern Louisiana. With increasing tidal prism, major changes are taking place within and adjacent to the inlets. The purpose of this thesis is to examine how Caminada Pass, a tidal inlet along the Caminada-Moreau headland, has evolved through time. Fundamental to this effort is evaluating which processes have contributed toward inlet evolution and what is the response of the inlet-bordering barrier island shorelines of Grand Isle and Elmer’s Island. This effort summarizes previous results and utilizes published bathymetric data, aerial photographs, vector shorelines, satellite images, and seafloor grab samples. The intent of this research is to document the variety of data that are available for future studies of Caminada Pass, an evaluation of long and short-term changes to the system, and an overall better understanding of the inlet dynamics of Caminada Pass.
1048

Characterization of Dredged Sediment Used in Coastal Restoration and Marsh Creation Projects

Mattson, Gregory A, II 16 May 2014 (has links)
To minimize coastal land loss and create new land, dredged sediment has been in use in coastal Louisiana during the last several years. Engineering properties and material characteristics of dredged material are input parameters in several mathematical models used to predict the long-term hydrodynamic behavior of the coast. Therefore, proper characterization of the dredged material is of utmost importance in the correct design of coastal restoration and land creation projects. The sedimentation characteristics of the dredged material, among other factors, depends on the (a) grain size distribution of the dredged material, (b) salinity (fresh, brackish, or saltwater environment) of the composite slurry, and (c) concentration of the solid particles in the slurry. In this research, dredged sediments obtained from actual coastal restoration projects were characterized. Furthermore, the effects of grain size distribution, salinity and solid particle concentration on sedimentation characteristics have been evaluated.
1049

3-D Hydrodynamic and Non-Cohesive Sediment Transport Modeling in the Lower Mississippi River

Teran Gonzalez, Grecia A 16 May 2014 (has links)
The purpose of this research is to develop a 3-D numerical model on the Lower Mississippi River to simulate hydrodynamics and non-cohesive sediment transport. The study reach extends from Bonnet Carré Spillway (RM 127) to Head of Passes (RM 0). Delft3D with sigma coordinates was selected as the river modeling tool. This model River domain is characterized by a complex distributary system that connects the Mississippi River to the Gulf of Mexico. The boundary conditions were: water levels in the Gulf and Head of Passes; and discharges upstream. For the calibration, there are observed data for both types of boundary conditions. Several periods of high discharge were simulated to compare water level, discharge, velocity profiles and sediment transport with measurements and accomplish calibration and validation of the model. A calibrated 3-D model has been developed with the following %RMSE: 5% for stage; 6% for discharge; and 5% for sand load.
1050

Passive restoration and non-invasive monitoring of soft-sediment ecosystems on the North Coast of British Columbia, Canada

Campbell, Emily 23 July 2019 (has links)
Soft-sediment ecosystems can be degraded through anthropogenic development, leading to reduced habitat suitability for biological communities. On the North Coast of British Columbia, Canada, intensive industrial activity and coastal development has occurred, specifically around the Skeena and Kitimat River Estuaries. In addition to current development, both regions have the potential for further development, while also undergoing passive restoration from historical disturbances. Therefore, I aimed to broaden our understanding of passive restoration and non-invasive monitoring of intertidal soft-sediment ecosystems, by carrying out experiments at mudflats in both estuaries during the summer of 2017. Specifically, I aimed to expand the use of a non-invasive population assessment technique to novel species in soft-sediment ecosystems. Relationships between burrowing decapod abundance and burrow openings have been successfully used to estimate population sizes, but this technique has yet to be applied to large burrowing polychaetes, bivalves, or in regions of high macrofaunal diversity. As such, I assessed mudflats in regions of low (n = 1 species) and high (n = 8 species) biodiversity to determine if macrofauna abundances could be estimated from burrow openings on the sediment surface. Where only one burrowing bivalve species was present, a relationship between burrow openings and population abundance was not feasible, but burrow openings were useful in estimating total macrofaunal community abundance at a high diversity mudflat. This suggests that monitoring through burrow opening counts has the ability to detect overall changes in population abundance. Next, I examined the infaunal community, sediment conditions, and nutrient availability at one intertidal mudflat in the Skeena River Estuary following the cessation of heavy industrial activities (i.e. a salmon cannery and pulp mill) to determine the capacity for passive restoration. Sediment conditions varied spatiotemporally, and nutrient availability showed temporal variation but trends were difficult to relate to historical or current potential disturbances. The legacy of past development is still apparent on the infaunal community in the form of patchy distributions of disturbance-indicating taxa, but the mudflat appears to be in an overall healthy state with a diverse and functioning food web, indicating community recovery from historical activities. Results from these studies indicate passive restoration can be appropriate for estuarine soft-sediment ecosystems, while monitoring population abundance through burrow openings could be a method of detecting disturbances or tracking recovery of macrofaunal populations. / Graduate / 2020-06-28

Page generated in 0.0444 seconds