• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1053
  • 462
  • 146
  • 135
  • 63
  • 51
  • 41
  • 37
  • 19
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • Tagged with
  • 2568
  • 772
  • 367
  • 287
  • 277
  • 258
  • 245
  • 193
  • 189
  • 183
  • 163
  • 149
  • 149
  • 141
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
841

Determining the Anthropogenic Effects on Eutrophication of Utah Lake Since European Settlement Using Multiple Geochemical Approaches

Williams, Richard Ronald Rawle 26 October 2021 (has links)
Recent urbanization of Utah Valley, Utah, has highlighted the impacts of anthropogenically-driven eutrophication of Utah Lake, which may lead to more frequent harmful algal blooms. To examine changes in trophic state, three freeze cores were taken from Utah Lake (Goshen Bay, Provo Bay, and near the Provo Boat Harbor) to examine the extent of eutrophication since European settlement. 210Pb and 137Cs chronologies were constructed for all three cores, although due to low supported 210Pb in the Provo Boat Harbor core, an additional pollen analysis was performed. Lower juniper pollen counts in addition to higher POACEAE (grasses and cereals) counts above 27 cm suggests that land clearance was taking place and horizons above this depth are post-1850s, when Utah Valley was settled. Chronologies in Goshen Bay and Provo Bay show that horizons above 40 cm are post-1950s. Hydrogen index (HI) values derived from RockEval pyrolysis were used to characterize the organic matter in the cores. Material from all three cores show an up-section increase in HI, consistent with the increasing deposition of algal matter. δ15NATM and δ13CVPDB isotope ratios were also measured for organic matter in the cores. 15N shows enrichments upward in the cores, combined with a depletion in 13C across all three. δ15NATM values suggest increasing anthropogenic influence with time that may contribute to algal blooms and eutrophication. δ13CVPDB ratios become depleted towards the top of the core showing a change in the lake’s ecology which may be due to the introduction of invasive Phragmites. X-Ray diffraction (XRD) analysis was used to analyze mineralogical differences. Eastern Utah Lake and Goshen Bay cores contain 70-80 % calcite, 10-15% quartz and 10% dolomite. Provo Bay samples contain 50-60% calcite, 20-30% quartz, and 10% dolomite. The dominance of calcite suggests that the sediment is dominated by endogenic minerals, albeit with a greater contribution of detrital minerals in Provo Bay. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used for elemental analysis. Concentrations of phosphorous and trace metals increase in the younger sediment of all three cores, suggesting greater anthropogenic influence on lake water with time. Overall, the rise in HI, P, trace metals, and 15N since European settlement suggests that the lake has become more eutrophic and anthropogenically-impacted in the last 170 years. This highlights the importance of understanding human impacts on water quality to help mitigate any future damage to Utah Lake’s ecology and waterways.
842

Observations of the Beach Environment of Southwest Devon Island, Northwest Territories with Special Reference to the Role of Ice

Carlisle, Robert James 12 1900 (has links)
<p> The open water season of Radstock Bay is less than three months long and varies considerably from year to year. The break-up and ablation sequence of the bay is regular and systematic, commencing with a period of snow melt and run off and continuing until the dramatic evacuation of the ice. This evacuation is dependent on the ice coverage of Lancaster Sound. The ice foot, a feature found often on arctic beaches was found to be larger in areas of more shallow sloping beaches. A sediment size analysis revealed a trend of diminuation of grain size from S. to N. reflecting net sediment transport in that direction. The two major geomorphic events of the 1971 open water, were two storms, both of which had winds from the S.E. that generated 1.0 meter waves which moved sediment from S. to N. The importance of a small pack of ice in the nearshore zone in inhibiting wave action was noted during one of these events. The freeze-up sequence progressed slowly after the advent of sub-freezing temperatures until the temperature of the seawater reached its freezing point, whereupon the rapid covering of the bay with ice ensued.</p> / Thesis / Master of Science (MSc)
843

Evidence of Longshore Drift in Beach Sediment: Manzanillo, Costa Rica

Heikoop, Jeffrey Martin 04 June 1991 (has links)
<p> The beach at Manzanillo, Costa Rica, is composed of a mixture of terrigenous siliciclastic and marine calcareous sediment. The most abundant siliclastic grains are magnetite and diopside. The most abundant calcareous grains are red algae and molluscan fragments. These grains are found in much greater abundance in the beach sediment then in their source areas as a result of their resistance to breakdown.</p> <p> The distribution of the siliclastic minerals on the beach shows longshore drift to be from east to west. The main source of siliclastic sediment is the Rio Sixaola. Local rivers provide small inputs of sediment.</p> <p> The trace element chemistry of the beach indicates the possibility that some elements may be absorbed on the surfaces of grains as opposed to being substituted for other elements in mineral lattices.</p> / Thesis / Bachelor of Science (BSc)
844

Treatment of Stormwater Pond Sediment by Thermal Plasma Systems

Li, Oi 04 1900 (has links)
<p> This thesis focuses on the thermal plasma treatment of non-point source pollutants accumulating in stormwater ponds. Stormwater ponds are constructed as a part of urban non-point source pollution control systems. Pollutants from various sources are collected in the stormwater ponds as sediments. In this work, stormwater sediments were first separated by a filter with an opening of 208μm. The filtered sludge-water was subjected to pulsed arc electrohydraulic discharge (PAED) treatment while the solid part (i.e., wet sludge and dried PAED treated sludge) was subjected to thermal plasma treatment under non-DC transferred and partial transferred operation modes. The results from the PAED sludge-water treatment show that the reduction of TOC in sludge-water was approximately 80% and was greater than 90%, respectively, after 5 minutes and 2 hours of PAED treatment. The accumulated gaseous concentrations of CxHy, CO, C02, S02, H2S and NO emission from sludge-water treatment were 8.2, 3.1, 1.9, 0.32, 0.29 and 0.07 mg/L, respectively, after 2 hours of PAED treatment. The concentrations of volatile elements in sediments such as S, Br, Cl and K decreased approximately 80, 90, 30 and 20% respectively. The solid-phase carbon was observed to be approximately completely removed after treatment. Based on the above results, it can be concluded that PAED successfully degraded organic compounds into C02, CO and CxHy, and converted sulfur and nitrate compounds into S02, HzS and NO. </p> <p> Thermal plasma wet-sludge treatments showed that a reduction of TOC was approximately 52% with argon plasma gas and air flow rates (in the reaction zone) of 24 and 2.4 L/min, respectively. Based on SEM images, wet sludge was melted under partial transferred mode. Thirteen elements with concentration relationships of 0 > Si > Al > Ca > S >Fe> K > Mg > Na > Cu > C > Ti > Cl were quantified by the X-ray energy dispersion technique. The elemental weight percentages of Si, K, Fe and 0 increased with increasing reaction zone air flow rate, while Ca and Cu decreased with increasing air flow rate. Thirty two elements were quantified by Neutron Activation Analyses (NAA) but only 27 elements were above the detection limits. Major elements (concentration> 1000 ppm) with relative concentrations of Ca > Al >Fe> K > Mg > Na > Ti > Cl; minor elements (100 - 1000 ppm) with relative concentrations of Mn > Ba > Sr > Zn; and trace elements(< 100 ppm) with relative concentration were Mo > V > Cr > Br >La> As > Sc > Th> As > Co > Dy > W > Sb > Eu; were determined. Concentrations of Zn, La and Co were enriched 90, 50 and 30% on average respectively, while concentrations of Br, W and As decreased by 80, 50 and 20% on average respectively. The chemical compositions in sludge were quite different after thermal plasma treatment. The average percentages of sand (Si02) and calcite (CaC03) decreased 35 and 10% respectively, while compounds such as KAlSi08, Fe304, NaCl and CaS04 were formed after thermal plasma treatment. Gaseous hydrocarbons, H2S, CO and NO were emitted continuously during the thermal plasma treatment of sludge. Higher reduction of organics and sulfur compounds and suppression of NOx formation were observed in the thermal plasma treatment of wet sludge. The integrated system consisting of PAED sludge-water treatment and thermal plasma wet sludge treatment under partial transferred mode may provide a potential for stormwater pond sediment treatment control. </p> / Thesis / Doctor of Philosophy (PhD)
845

Depositional Mechanics of Atypical Turbidites, Cloridorme Formation, Gaspé, Quebec

Skipper, Keith 10 1900 (has links)
<p> Thick turbidite beds, belonging to the β1 member, Cloridorme Formation (Ordovician), are exposed on the wavecut platform between St. H‎élier and Fame Point, Gasp‎é, Quebec. The local paleocurrent direction (to the west) is approximately parallel to the east-west strike of the vertical beds.</p> <p> These thick turbidite beds display a sequence of sedimentary structures which differs from the sequence defined by Bouma. Three broad divisions are recognised: a basal division consists of either limestone or quartz granule to pebble conglomerate (0-4 cms thick) or coarse sand greywacke or calcareous wacke (0-15 cms thick). Basal divisions of calcareous wacke frequently display ripple-lamination, parallel lamination, or upstream inclined laminae. Where the upstream inclined laminae form a single set, they occur below a sinuous profile (wavelength 40-80 cms, and amplitude 2-5 cms).</p> <p> A second division (0-330 cms thick) consists in most places of spindle or globular shaped calcareous nodules scattered in an argillaceous matrix. In some beds streaking and lobing of light coloured carbonate bearing material is associated with these nodules. The upper division consists of fine grained siltstone and shale.</p> <p> Thick broken blocks which have fallen from the cliffs, display the internal characteristics of the second division. Hemi-ellipsoid structures, arranged en echelon and convex towards the base of the bed, are displayed by one block.</p> <p> The upstream inclined laminae in the basal divisions of calcareous wacke beds are interpreted as the result of the upstream migration of antidunes. The nodules within the second division developed as 'pseudonodules'. The hemi-ellipsoid structures resemble damped large scale (macroturbulent) eddies associated with the flow of dense grain dispersions. The directions of the internal motions are shown by the orientation of grains and graptolite stipes.</p> <p> Correlation of these beds has been achieved over a distance of 7-1/2 miles. Over this distance the beds show little change in their characteristics. Basal divisions of granule and pebble conglomerate persist over this distance and show that coarse particles may be transported by turbidity currents over long distances. The sedimentary structures of the basal divisions of several calcareous wacke beds give the appearance (probably misleading) of an increase in flow regime downcurrent.</p> <p> The beds were probably deposited from initially low concentration but high density turbidity currents accompanied by a period of coarse grain traction and suspension near to the bed. In the case of calcareous wacke beds this period of traction formed rippled, flat or antidune bed forms. Stratification has been preserved by the rapid deposition of sediment en masse from the subsequent high concentration body of the current. The formation of a succession of 'quick' beds led to the sedimentation of the second division.</p> <p> Calculations suggest that the currents moved over slopes of much less than 1°.</p> / Thesis / Master of Science (MSc)
846

Transport and Destruction of Pelecypod Valves in the Minas Basin, Bay of Fundy

Szczuczko, Robert Bolek 05 1900 (has links)
<p> Processes affecting the transportation and destruction of empty valves of the pelecypods Mya arenaria and Macoma balthica, were examined within the intertidal zone off Portapique Beach in the Minas Basin(Bay of Fundy). It was found that valve transport was away from shore within channels and eastward alongshore on the flats. It was observed that the rate of transport of left valves and small valves was greater than right valves large valves respectively. Transported valves are preferential oriented by currents of the flood and ebb tides and those within intertidal channels. Channel migration does not appear to be of significance in removing empty valves from these intertidal sediments. The loss valves from within the sediment is attributed to an unknown 'escape' mechanism. Once free of the sediment, valves are transported, weakened by boring thallophytes and mechanically destroyed during transport.</p> / Thesis / Bachelor of Science (BSc)
847

The accumulation of pollutants in detention ponds

Johansson, Frida January 2019 (has links)
An increasingly recognized problem in the world is stormwater runoff and its generation of pollutants in urban areas. Stormwater treatment technologies have therefore increased in implementation to prevent this pollution. One of these preventions are detention ponds, which primary function is the equilibration of water, but have also proven to have the capacity to remove many particle-bound pollutants by sedimentation. What's not as known is to what extent. The investigated detention ponds were compared to see to what extent they had accumulated particle-bound elements such as heavy metals, phosphorus and sulphur. This because it is essential to clarify whether they embody ecotoxicological hotspots and if when dredged will have sediment classified as hazardous waste. What was found in this study was that there was no significant difference in accumulation of pollutants or sediment depending on inlet or outlet, a difference between these could still be seen though by looking at the figures. The sediment of some of the detention ponds also had levels of the investigated elements higher than existing guideline values recommend for living organisms in the sediment and could also be classified as hazardous waste when emptied. More investigations need to be done, for example about how hydrology, plant uptake and design affect the sedimentation of pollutants to know for sure how the accumulation of pollutants in detention ponds work.
848

Bedload transport in water courses with submerged vegetation

Bonilla Porras, Jose Antonio 03 February 2022 (has links)
Vegetation has been identified to play a significant role in river environments by providing a wide range of ecosystem services. For this reason, the use of plants has become relevant in river restoration projects. However, the presence of plants in channel beds increases the flow resistance and, thus, the water levels during flood conditions. Additionally, river vegetation, whether instream or riparian, influences the morphological evolution of rivers. Observations show that instream vegetation has a strong impact on bedload transport. Yet, there is a scarcity of sediment transport predictors that directly account for the effects of plants, and existing methods, based on re-calculation of roughness coefficients, may present some inconsistencies. Therefore, an approach that extends Einstein’s (1950) parameters to include the effects of vegetation geometry and spatial density on sediment transport is herein proposed. The new formulations of the dimensionless transport parameter Φ and the flow intensity parameter Ψ were derived for their implementation in existing bedload predictors of the form Φ = (Ψ). The applicability of this new approach considers the presence of submerged and emergent vegetation, but reduces to the original Einstein’s model if vegetation is absent. The research methodology was carried out in four phases. First, a comprehensive literature review for the identification of, mainly, the different effects of vegetation on river morphodynamics, the state-of-the-art knowledge on the flow-sediment-vegetation interactions, and the current approaches to bedload estimation in channels with vegetated beds. Second, the derivation of the extended Einstein’s parameters, starting from a momentum balance for a control volume of a generic channel with instream submerged vegetation (as proposed by Petryk and Bosmajian, 1975). Third, an extensive experimental program carried out on a tilting flume with a mobile bed and with plants being represented by series of aluminum cylinders. Different scenarios of vegetation spatial density were tested while measurements of bedload rate, water level, bed level and flow velocity were periodically performed in order to assess conditions of stationarity and morphodynamic equilibrium. Last, a deep analysis of experimental results allowed for the calibration of the new approach, whereas external datasets from the literature were used to assess its performance in a wide variety of conditions. A study based on four statistical measures showed that the extended Einstein’s parameters are significantly more suitable for bedload rate estimation when compared to the original ones, since predicted and measured values have, on average, the same order of magnitude. Additionally, the new approach outperformed the widely-adopted method of Baptist (2005), which consists of the re-calculation of bed roughness in vegetated settings. Finally, the experimental observations suggest that the submergence ratio and the stem spatial density are the most important traits of river plants to display influence on bedload transport, channel bed stability, and bed form dimensions and patterns. A better understanding of these traits might lead to better prediction capabilities of river evolution. / La vegetazione svolge un ruolo fondamentale negli ambienti fluviali, poiché fornisce un ampio spettro di servizi ecosistemici; per questo essa è una componente rilevante dei progetti di riqualificazione fluviale. Tuttavia, la presenza di piante in alveo aumenta la resistenza al moto e di conseguenza anche il tirante idrico durante gli eventi di piena. Inoltre, la copertura vegetale in alveo e nelle zone riparie influenza l'evoluzione morfologica dei corsi d'acqua. Nonostante le evidenze sperimentali mostrino che la vegetazione in alveo ha un forte impatto sul trasporto dei sedimenti, sono poche le formule di trasporto che tengono conto in modo esplicito dell'effetto della vegetazione e i metodi esistenti, basati sulla determinazione di un coefficiente di scabrezza, possono dare luogo a incongruenze. Per questa ragione, in questa tesi si propone un approccio che estende la formulazione di Einstein (1950) e include l'effetto della geometria e della densità spaziale della vegetazione sul trasporto solido. Sono state derivate nuove espressioni per il parametro di trasporto adimensionale Φ e il parametro di intensità del trasporto Ψ, che possono essere introdotte in modelli di trasporto esistenti del tipo Φ = f(Ψ). Questo nuovo approccio consente di considerare l'effetto della presenza di vegetazione sommersa ed emergente e si riduce al modello originale di Einstein in assenza di vegetazione. L'attività di ricerca si è svolta in quattro fasi. Nella prima fase si è svolta un'analisi approfondita della letteratura mirata soprattutto a identificare gli effetti della vegetazione sulla morfodinamica fluviale, definire lo stato dell'arte relativo alle interazioni fra flusso liquido, sedimenti e vegetazione, ed analizzare gli approcci esistenti per la stima del trasporto di fondo in alvei vegetati. Nella seconda fase si sono derivati i parametri della formulazione di Einstein estesa a partire dal bilancio di quantità di moto per un volume di controllo di un canale generico con vegetazione sommersa (come proposto da Petryk e Bosmajian, 1975). Nella terza fase è stato condotto un esteso set di esperimenti, utilizzando un modello fisico costituito da una canaletta di laboratorio a pendenza variabile e fondo mobile, in cui le piante sono state simulate tramite cilindri in alluminio. Sono stati riprodotti diversi scenari di densità spaziale della vegetazione e sono stati misurati periodicamente la portata solida, la quota della superficie libera e del fondo e la velocità della corrente per valutare le condizioni di stazionarietà ed equilibrio morfodinamico. Infine, il nuovo approccio è stato calibrato sulla base di un'analisi approfondita dei risultati sperimentali e quindi applicato a set di dati di letteratura per valutarne l'accuratezza in un ampio intervallo di condizioni. Un'analisi statistica basata su quattro indicatori ha mostrato che i parametri della formulazione di Einstein estesa producono stime di trasporto solido sensibilmente più accurate rispetto ai parametri originali, in quanto i valori calcolati sono, in generale, dello stesso ordine di grandezza dei valori misurati. Inoltre, il nuovo approccio dà risultati migliori rispetto al metodo di Baptist (2005), ampiamente adottato, che consiste nel ricalcolo della scabrezza per gli alvei vegetati. Infine, le osservazioni sperimentali suggeriscono che il rapporto di sommergenza e la densità spaziale delle piante sono i parametri che influenzano in modo più significativo il trasporto solido, la stabilità del fondo dell'alveo, la scala delle forme di fondo e la loro organizzazione spaziale. Una conoscenza più approfondita di questi aspetti può contribuire a una maggiore capacità di prevedere l'evoluzione dei corsi d'acqua. / Se ha identificado a la vegetación como un actor importante en ambientes fluviales al proporcionar una amplia gama de servicios ecosistémicos. Por esta razón, el uso de plantas se ha vuelto cada vez más relevante en proyectos de restauración de ríos. Sin embargo, su presencia en lechos fluviales impacta la resistencia al flujo, aumentando los niveles del agua en condiciones de inundación. Además, este tipo de vegetación, ya sea que esté en el lecho o en las márgenes, influye en la evolución morfológica de los ríos. Diversas observaciones han mostrado que la vegetación fluvial tiene un fuerte impacto en las tasas de transporte sólido de fondo. A pesar de ello, hay una escasez de métodos confiables para la estimación de este tipo de sedimentos que tome en consideración el efecto de las plantas y, aquéllos que existen, los cuales se basan en la corrección del coeficiente de rugosidad del canal, suelen presentar resultados inconsistentes. Por tanto, se propone aquí un método que extiende las definiciones fundamentales de Einstein (1950) en modo que se incluyan los efectos de la geometría y la densidad espacial de las plantas sobre el transporte sólido. Las nuevas ecuaciones del parámtero de transporte, Φ, y el parámetro de movilidad, Ψ, fueron obtenidas para su implementación en métodos predictores de transporte de fondo de la forma Φ = (Ψ). La aplicabilidad de este nuevo enfoque considera la posibilidad de vegtación fluvial tanto emergente como sumergida, y se reduce a las ecuaciones originales de Einstein si ésta fuera inexistente. La metodología de investigación se llevó a cabo en cuatro fases. Primero, una revisión exhaustiva de la literatura para la identificación, principalmente, de los diferentes efectos de la vegetación en la morfodinámica de ríos, los avances más recientes en el conocimiento sobre las interacciones flujo-sedimento-vegetación, y los métodos actualmente existentes para la estimación del transporte sólido de fondo en canales naturales vegetados. En segundo lugar, la obtención de los parámetros de Einstein extendidos a partir de un balance de momentum para el volumen de control de un canal genérico con vegetación sumergida (según lo propuesto por Petryk y Bosmajian, 1975). En tercer lugar, un extenso programa experimental realizado en un canal de fondo móvil y pendiente variable, con las plantas siendo representadas por series de cilindros metálicos. Se probaron diferentes escenarios de densidad espacial de vegetación, mientras que periódicamente se realizaron mediciones transporte sólido, niveles del agua, topografía del fondo y velocidad del flujo con el objeto de evaluar las condiciones de flujo uniforme y equilibrio morfodinámico. Por último, un análisis profundo de los resultados experimentales permitió la calibración del nuevo método, mientras que se utilizaron datos externos disponibles en la literatura para evaluar su desempeño bajo diversas condiciones. Un estudio basado en cuatro medidas estadísticas mostró que los parámetros extendidos de Einstein son mucho más adecuados para la estimación del transporte de fondo en comparación con los originales, ya que los valores estimados y los medidos muestran, en promedio, el mismo orden de magnitud. Además, el nuevo método superó al propuesto por Baptist (2005), ampliamente utilizado, el cual consiste en la corrección de la rugosidad del canal en presencia de vegetación. Finalmente, las observaciones experimentales sugieren que la sumergencia de las plantas y la densidad espacial de los tallos son las variables más influyentes en el transporte sedimentos de fondo, la estabilidad del lecho, y las dimensiones y patrones de la forma de fondo. Una mejor comprensión de estas variables puede significar una mejor capacidad para predecir la evolución de un río.
849

ECOLOGICAL BOUNDING OF WETLAND DENITRIFICATION IN A MISSISSIPPI RIVER FLOODPLAIN

Samberg, Stony Scott 01 August 2023 (has links) (PDF)
Accurately measuring denitrification in stochastic floodplains, particularly the leveed and unleveed reaches of the Mississippi River basin, requires innovative experiments. To replicate hydraulic variability ranging from overland flooding to groundwater exfiltration in floodplain wetlands, I incubated sediment cores collected from four field sites across the Dogtooth Bend of the middle Mississippi River; pairing novel deep injection (Graphic Abstract Fig. A, left) with traditional surface delivery (Graphic Abstract Fig. A, right) of both oxic and anoxic Mississippi River water. In sandy sediments with unconstrained flux of nutrients, denitrification more than doubled across a range from 192 to 429 mg N m-2 day-1 in a linear anoxic-injection hierarchy of anoxic deep > anoxic surface > oxic deep > oxic surface treatments. In contrast, for incubations in diffusion-limited clay sediments, injection type made no difference; however, in anoxic conditions denitrification rates were as high as 435 mg N m-2 day-1 compared to oxic incubations at 187 mg N m-2 day-1. This methodology reveals the magnitude of diverse denitrification rates spanning different hydrologic conditions (Abstract Fig. B) and the mediation of denitrification by sediment type. These findings provide quantified bounds to inform resource management decisions regarding what areas should be selected for protection or hydrologic reconnection to best facilitate nutrient processing services like denitrification under varying hydrologic conditions.
850

Optimization of marsh terracing as a wetland restoration technique: Mitigation of cohesive sediment erosion by waves associated with frontal passage

French, Joseph 01 May 2020 (has links)
Rates of marsh wetland loss in the northern Gulf of Mexico are the highest observed in North America. Marsh terraces have been implemented over the last 30 years to address this loss. Marsh Terraces reduce fetch and resulting wave energy which, reduces rates erosion of sediments in coastal wetlands. This thesis evaluated marsh terraces by extensive data collection that will assess the spatiotemporal relationships between wind patterns, wave parameters, and sediment strength in water bodies modified with marsh terraces. Data collected during two four-month deployments captured the passage of 40 cold front storms and the passage of Hurricane Barry. Results indicated that the mean threshold for erosion for marsh platform and terraces (0.194 N/m2 and 0.500 N/m2) were often exceeded during the passage of cold front storms. Orientation to reduce the influence of these storms was determined to be 270/55 which is perpendicular to cold front associated winds.

Page generated in 0.0643 seconds