• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sustainable Arsenic Mitigation A Strategy for Scaling-up Safe Water Access : A Strategy for Scaling-up Safe Water Access

Hossain, Mohammed January 2015 (has links)
In rural Bangladesh, the drinking water supply is mostly dependent upon manually operated hand pumped tubewells, installed by the local community. The presence of natural arsenic (As) in groundwater and its wide scale occurrence has drastically reduced the safe water access across the country and put tens of millions of people under health risk. Despite significant progress in understanding the source and distribution of As and its mobilization through sediment-water interactions, there has been limited success in mitigation since the problem was discovered in the country’s water supply in 1993. This study evaluated the viability of other kinds of alternative safe drinking water options and found tubewells are the most suitable due to simplicity and technical suitability, a wide acceptance by society and above all low cost for installation, operation and maintenance. During planning and decision making in the process of tubewell installation, depth of the tubewell is a key parameter as it is related to groundwater quality and cost of installation. The shallow wells (usually &lt; 80m) are mostly at risk of As contamination. One mitigation option are deep wells drilled countrywide to depths of around 250 m. Compared to safe water demand, the number of deep wells is still very low, as the installation cost is beyond affordability of the local community, especially for the poor and disadvantaged section of the society. Using depth-specific piezometers (n=82) installed in 15 locations spread over the 410 km2 area of Matlab (an As-hot spot) in southeastern Bangladesh, groundwater monitoring was done over a 3 year period (pre- and post-monsoon for 2009-2011 period). Measurements were performed for hydrogeological characterization of shallow, intermediate deep and deep aquifer systems to determine the possibility of targeting safe aquifers at different depths as the source of a sustainable drinking water supply. In all monitoring piezometers, As was found consistently within a narrow band of oscillation probably due to seasonal effects. Hydrogeochemically, high-As shallow groundwaters derived from black sands are associated with elevated DOC, HCO3, Fe, NH4-N and PO4-P and with a relatively low concentration of Mn and SO4. Opposite to this, shallow aquifers composed of red and off-white sediments providing As-safe groundwater are associated with low DOC, HCO3, Fe, NH4-N and PO4-P and relatively higher Mn and SO4. Groundwaters sampled from intermediate deep and deep piezometers which were found to be low in As, are characterized by much lower DOC, HCO3, NH4-N and PO4-P compared to the shallow aquifers. Shallow groundwaters are mostly Ca-Mg-HCO3 type and intermediate deep and deep aquifers’ groundwaters are mostly Na-Ca-Mg-Cl-HCO3 to Na-Cl-HCO3 type. A sediment color tool was also developed on the basis of local driller’s color perception of sediments (Black, White, Off-white and Red), As concentration of tubewell waters and respective color of aquifer sediments. A total of 2240 sediment samples were collected at intervals of 1.5 m up to a depth of 100 m from all 15 nest locations. All samples were assigned with a Munsell color and code, which eventually led to identify 60 color varieties. The process continued in order to narrow the color choices to four as perceived and used by the local drillers for identification of the targeted As-safe aquifers. Munsell color codes assigned to these sediments render them distinctive from each other which reduces the risk for misinterpretation of the sediment colors. During the process of color grouping, a participatory approach was considered taking the opinions of local drillers, technicians, and geologists into account. In addition to the monitoring wells installed in the piezometer nests, results from 87 other existing drinking water supply tubewells were also considered for this study. A total of 39 wells installed in red sands at shallow depths producing As-safe water providing strong evidence that red sediments are associated with As-safe water. Average and median values were found to be less than the WHO guideline value of 10 μg/L. Observations for off-white sediments were also quite similar. Targeting off-white sands could be limited due to uncertainty of proper identification of color, specifically when day-light is a factor. Elevated Mn in red and off-white sands is a concern in the safe water issue and emphasizes the necessity of a better understanding of the health impact of Mn. White sediments in shallow aquifers are relatively uncommon and seemed to be less important for well installations. Arsenic concentrations in more than 90% of the shallow wells installed in black sands are high with an average of 239 μg/L from 66 wells installed in black sediments. It is thereby recommended that black sands in shallow aquifers must be avoided. This sediment color tool shows the potential for enhancing the ability of local tubewell drillers for the installation of As-safe shallow drinking water tubewells. Considering the long-term goal of the drinking water safety plan to provide As-safe and low-Mn drinking water supply, this study also pioneered hydrogeological exploration of the intermediate deep aquifer (IDA) through drilling up to a depth of 120 m. Clusters of tubewells installed through site optimization around the monitoring piezometer showed a similar hydrochemical buffer and proved IDA as a potential source for As-safe and low-Mn groundwater. Bangladesh drinking water standard for As (50 µg/L) was exceeded in only 3 wells (1%) and 240 wells (99%) were found to be safe. More than 91% (n=222) of the wells were found to comply with the WHO guideline value of 10 µg/L. For Mn, 89% (n=217) of the wells show the concentration within or below the previous WHO guideline value of 0.4 mg/L, with a mean and median value of 0.18 and 0.07 mg/L respectively. The aquifer explored in the Matlab area shows a clear pattern of low As and low Mn. The availability of similar sand aquifers elsewhere at this depth range could be a new horizon for tapping safe drinking water at about half the cost of deep tubewell installation. All findings made this study a comprehensive approach and strategy for replication towards As mitigation and scaling-up safe water access in other areas of Bangladesh and elsewhere having a similar hydrogeological environment. / <p>QC 20151211</p> / Sida-SASMIT project (Sida Contribution 75000854).
2

A preliminary assessment of the novel application ASMITAS using sediments from Matlab, Bangladesh / En preliminär bedömning av den nya applikationen ASMITAS genom användning av sediment från Matlab, Bangladesh

O’Kelly, Eva January 2020 (has links)
Most of the drinking water supply in rural Bangladesh comes from groundwater collected using shallow tubewells. The tubewells, usually shallow because of the increased cost involved in deeper tubewells, have been installed by local drillers. A Sediment Color Tool was developed, with input from local drillers, that associated the arsenic concentration with specific sediment colors, in order to help the drillers install safe tubewells. This tool was digitized into the phone application, ASMITAS, to reduce subjectivity in sediment color determination due to human error or surrounding conditions, when used with a color sensor. The purpose of this study was to carry out a preliminary assessment of the application performance and usability, and the results provided by the application for color identification. 35 sediments were used and assigned into 4 different data sets to allow for comparison. Two data sets were assigned a Munsell color manually, while two were assigned the Munsell Soil Color (or Red-Green-Blue color) through use of the digital app. The sensor, the Nix Color Sensor Pro 2, was validated through a literature review and is considered accurate in identifying the color of the soil sediments. The data sets were compared based on the Delta E 2000 formula to determine the color difference between the data sets. The most relevant result of this method was between the Red-Green-Blue that the Nix Sensor originally provided to the application versus the closest matching Munsell code that the application could provide. It showed that the library from which the Munsell color was drawn was not yet expansive enough to accurately identify all sediments that may be scanned. Cyan-Magenta-Yellow-Black color comparisons were made to ascertain which aspects of the color are the most difficult to identify. It was found that both the sensor and the human eye had difficulties in identifying differences in the yellow percentage of several of the samples. The results showed that there may be greater need for distinction of which yellow percentages of Cyan-Magenta-Yellow-Black belong to which color sediment. Overall, the application appears to have a small number of less prominent features and functions to improve on prior to the publication of the application. At this stage of development, the main goal lies in the improvement and building of the Munsell color code reference library and the library of arsenic concentrations associated with each sediment color within the application, in order to improve the accuracy of the results. / Största delen av dricksvattenförsörjningen i lantlig Bangladesh kommer från grundvatten som samlas in med rörbrunnar. Rörbrunnarna, som vanligtvis är grunda som en följd av kostnaderna, har installerats av lokala borrare. Under 2007 antogs det att färgen på sedimentet i vilket rörbrunnarna placeras ger en indikation på arsenikens koncentration. Därför utvecklades Sediment Color Tool med input från de lokala borrarna. Verktyget vidareutvecklades till en digital app, ASMITAS, för att minska subjektiviteten i markfärgbestämning på grund av mänskliga fel eller omgivande förhållanden. Syftet med denna studie var att utvärdera applikationens prestanda i detta stadie av dess utveckling och färgidentifiering som genomförts av applikationen. 35 sediment användes i första bedömningen och klassificerades fyra gånger i fyra olika datamängder för att möjliggöra jämförelse. Två datamängder tilldelades en Munsell Soil Color manuellt, medan två tilldelades sin färg genom användning av den digitala appen. Sensorn som användes, Nix Color Sensor Pro 2, validerades genom en litteraturöversikt och anses vara korrekt när det gäller att identifiera färgen på sediment. De fyra datamängderna jämfördes visuellt med användning av färgbrickor. De jämfördes baserat på DE2000-formeln för att bestämma färgskillnaden mellan datamängden. Det mest avslöjande resultatet med denna metod var mellan dem två digitalt förvärvade datamängderna. Resultatet föreslår att referensbiblioteket i ASMITAS, från vilket matchen togs, ännu inte var tillräckligt stort för att identifiera alla sedimentprover noggrant för att ej vara märkbar för det mänskliga ögat. Cyan-Magenta-Gul-Svart jämförelser gjordes för att se vilka aspekter av färgen som är svårast att identifiera. Resultaten visade att både sensorn och det mänskliga ögat hade svårigheter att identifiera skillnader i den gula procentandelen av flera av proverna och sedimentfärgerna. Resultaten visade att det kan finnas ett större behov av åtskillnad av vilka gula procentsatser som tillhör vilken färg av sediment (och motsvarande arsenikkoncentration). Det finns ytterligare aspekter och funktioner av appen som är mindre centrala för dess prestanda som bör förbättras innan applikationen publiceras. I detta utvecklingsstadium ligger emellertid huvudmålet i förbättring och uppbyggnad av Munsell- färgkodreferensbiblioteket och biblioteket med arsenik-koncentrationer som är kopplad till varje sedimentfärg i applikationen. Detta för att öka resultatets noggrannhet.

Page generated in 0.0617 seconds