• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of Geometric and Volumetric Methods to a 3D Solid Model for Measurement of Gully Erosion and Sediment Yield

Luffman, Ingrid, Nandi, Arpita, Luffman, Benjamin 01 March 2018 (has links)
Gully erosion is a global problem that degrades land and reduces its utility for agriculture, development, and water quality. Quantification of sediment yield and control of sediment sources is essential for environmental protection. Five methods to evaluate erosion rates and sediment yield on an east Tennessee, USA, hillslope were compared: (1) physical measurement by removal of accumulated sediment using 10 L buckets; (2) repeated measurement of erosion pins in gully (erosional) and delta (depositional) areas; (3) geometric model using a combination trapezoidal prism-cylinder segment; (4) geometric model using a series of trapezoidal pyramids; and (5) 3D solid computer modeling. The 3D solid model created in SolidWorks was selected as the reference model and all other methods overestimated sediment yield to varying degrees. Erosion pin methods overestimated sediment yield by 368% in deltas and 123% in gullies. Volumetric measurement of sediment using buckets overestimated sediment yield by 160% due to void space in the buckets. The trapezoidal prism-cylinder segment model overestimated sediment yield by 66% and the trapezoidal pyramids method overestimated sediment yield by 5.7%. For estimation of sediment trapped behind an elliptical or circular silt fence dam, use of the trapezoidal pyramid method provides a good approximation comparable to 3D solid computer modeling.
2

Sand Sea Extents and Sediment Volumes on Titan from Dune Parameters

Arnold, Karl D. 16 June 2014 (has links) (PDF)
Linear dunes are one of the most abundant and important features on the surface of Titan. We present a model for estimating the volume of dune sediment using the area coverage of Titan's sand seas along with dune widths, spacings, and heights. This helps to reveal local sediment transport and deposition. We refine global dune area estimates from Cassini SAR (Synthetic Aperture RADAR) of 20 million km2 or 24 ± 3% of Titan's surface based on ~50% Cassini RADAR global coverage. Additionally, the global area of sand seas is estimated from a joint analysis of Cassini SAR and ISS (Imaging Science Subsystem) images of 12.8 ± 2 million km2 or 15.4 ± 2.4% of Titan's surface. Also, we provide the first area measurements by sand sea, then describe a new method for estimation of the volume of dune sands across the sand seas based on imagery and measured dune characteristics (i.e., width, spacing, profile, and height) on Titan and in Earth's Namib Sand Sea. Our volume thickness map shows sand sea volumes of 3.8--7.9 x 104 km3 in Senkyo, 6.1--12.7 x 104 km3 in Belet, 5.3--11.0 x 104 km3 in Shangri-La, and also 5.3--11.0 x 104 km3 in Fensal and Aztlan Sand Seas. Our estimate for global dune sand volume is 206,000 km3 - 427,000 km3. The volume map identifies regional changes in sediment thickness implying local variations in transport and deposition and spatial variations in wind strength and direction. We show that dunes might be isolated to equatorial regions because of wind strength, topography, sediment supply, and humidity. Our preliminary map can be used as a tool to understand sediment transport and deposition to explain spatial variations in eolian sediment volume on Titan.
3

A Comparison of Spatial Interpolation Techniques for Determining Shoaling Rates of the Atlantic Ocean Channel

Sterling, David L. 06 October 2004 (has links)
The United States of Army Corp of Engineers (USACE) closely monitors the changing depths of navigation channels throughout the U.S. and Western Europe. The main issue with their surveying methodology is that the USACE surveys in linear cross sections, perpendicular to the channel direction. Depending on the channel length and width, these cross sections are spaced 100 - 400 feet apart, which produces large unmapped areas within each cross section of a survey. Using a variety of spatial interpolation methods, depths of these unmapped areas were produced. The choice of spatial interpolator varied upon which method adequately produced surfaces from large hydrographic survey data sets with the lowest amount of prediction error. The data used for this research consisted of multibeam and singlebeam surveys. These surveys were taken in a systematic manner of linear cross-sections that produced tens of thousands of data points. Nine interpolation techniques (inverse distance weighting, completely regularized spline, spline with tension, thin plate spline, multiquadratic spline, inverse multiquadratic spline, ordinary kriging, simple kriging, and universal kriging) were compared for their ability to accurately produce bathymetric surfaces of navigation channels. Each interpolation method was tested for effectiveness in determining depths at "unknown" areas. The level of accuracy was tested through validation and cross validation of training and test data sets for a particular hydrographic survey. By using interpolation, grid surfaces were created at 15, 30, 60, and 90-meter resolution for each survey of the study site, the Atlantic Ocean Channel. These surfaces are used to produce shoaling amounts, which are taken in the form of volumes (yd.³). Because the Atlantic Ocean Channel is a large channel with a small gradual change in depth, a comparison of grid resolution was conducted to determine what difference, if any, exists between the calculated volumes from varying grid resolutions. Also, a comparison of TIN model volume calculations was compared to grid volume estimates. Volumes are used to determine the amount of shoaling and at what rate shoaling is occurring in a navigation channel. Shoaling in each channel was calculated for the entire channel length. Volumes from varying grid resolutions were produced from the Atlantic Ocean Channel over a seven-year period from 1994-2001. Using randomly arranged test and training datasets, spline with tension and thin plate spline produced the mean total error when interpolating using singlebeam and multibeam hydrographic data respectively. Thin plate spline and simple kriging produced the lowest mean total error in full cross validation testing of entire singlebeam and multibeam hydrographic datasets respectively. Volume analysis of varying grid resolution indicates that finer grid resolution provides volume estimates comparable to TIN modeling, the USACE's technique for determining sediment volume estimates. The coarser the resolution, the less similar the volume estimates are in comparison to TIN modeling. All grid resolutions indicate that the Atlantic Ocean Channel is shoaling. Using a plan depth of 53 feet, TIN modeling displayed an annual average increase of 928,985 cubic yards of sediment from 1994 - 2001. / Master of Science
4

Fine grained sediment clean-up in a modern urban environment

Villemure, Marlene January 2013 (has links)
Fine grained sediment deposition in urban environments during natural hazard events can impact critical infrastructure and properties (urban terrain) leading to reduced social and economic function and potentially adverse public health effects. Therefore, clean-up of the sediments is required to minimise impacts and restore social and economic functionality as soon as possible. The strategies employed to manage and coordinate the clean-up significantly influence the speed, cost and quality of the clean-up operation. Additionally, the physical properties of the fine grained sediment affects the clean-up, transport, storage and future usage of the sediment. The goals of the research are to assess the resources, time and cost required for fine grained sediment clean-up in an urban environment following a disaster and to determine how the geotechnical properties of sediment will affect urban clean-up strategies. The thesis focuses on the impact of fine grained sediment (<1 mm) deposition from three liquefaction events during the Canterbury earthquake sequence (2010-2011) on residential suburbs and transport networks in Christchurch. It also presents how geotechnical properties of the material may affect clean-up strategies and methods by presenting geotechnical analysis of tephra material from the North Island of New Zealand. Finally, lessons for disaster response planning and decision making for clean-up of sediment in urban environments are presented. A series of semi-structured interviews of key stakeholders supported by relevant academic literature and media reports were used to record the clean-up operation coordination and management and to make a preliminary qualification of the Christchurch liquefaction ejecta clean-up (costs breakdown, time, volume, resources, coordination, planning and priorities). Further analysis of the costs and resources involved for better accuracy was required and so the analysis of Christchurch City Council road management database (RAMM) was done. In order to make a transition from general fine sediment clean-up to specific types of fine disaster sediment clean-up, adequate information about the material properties is required as they will define how the material will be handled, transported and stored. Laboratory analysis of young volcanic tephra from the New Zealand’s North Island was performed to identify their geotechnical properties (density, granulometry, plasticity, composition and angle of repose). The major findings of this research were that emergency planning and the use of the coordinated incident management system (CIMS) system during the emergency were important to facilitate rapid clean-up tasking, management of resources and ultimately recovery from widespread and voluminous liquefaction ejecta deposition in eastern Christchurch. A total estimated cost of approximately $NZ 40 million was calculated for the Christchurch City clean-up following the 2010-2011 Canterbury earthquake sequence with a partial cost of $NZ 12 million for the Southern part of the city, where up to 33% (418 km) of the road network was impacted by liquefaction ejecta and required clearing of the material following the 22 February 2011 earthquake. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill for all three liquefaction inducing earthquake events. The average cost per kilometre for the event clean-up was $NZ 5,500/km (4 September 2010), $NZ 11,650/km (22 February 2011) and $NZ 11,185/km (13 June 2011). The duration of clean-up time of residential properties and the road network was approximately two to three months for each of the three liquefaction ejecta events; despite events volumes and spatial distribution of ejecta. Interviews and quantitative analysis of RAMM data revealed that the experience and knowledge gained from the Darfield earthquake (4 September 2010) clean-up increased the efficiency of the following Christchurch earthquake induced liquefaction ejecta clean-up events. Density, particle size, particle shape, clay content and moisture content, are the important geotechnical properties that need to be considered when planning for a clean-up method that incorporates collection, transport and disposal or storage. The geotechnical properties for the tephra samples were analysed to increase preparedness and reaction response of potentially affected North Island cities from possible product from the active volcanoes in their region. The geotechnical results from this study show that volcanic tephra could be used in road or construction material but the properties would have to be further investigated for a New Zealand context. Using fresh volcanic material in road, building or flood control construction requires good understanding of the material properties and precaution during design and construction to extra care, but if well planned, it can be economically beneficial.

Page generated in 0.0538 seconds