• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 738
  • 571
  • 153
  • 54
  • 50
  • 17
  • 15
  • 12
  • 10
  • 9
  • 9
  • 6
  • 5
  • 5
  • 3
  • Tagged with
  • 2043
  • 491
  • 262
  • 246
  • 240
  • 209
  • 202
  • 184
  • 176
  • 166
  • 163
  • 143
  • 140
  • 139
  • 137
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Study of nitrogen limitation and seed nitrogen sources for historical and modern genotypes in soybean

Ortez, Osler January 1900 (has links)
Master of Science / Department of Agronomy / Ignacio Ciampitti / Soybean [Glycine max (L.) Merr.] yields have continuously increased over time. Seed yields are determined by the genotype, environment, and management practices (G × E × M) interaction. Closing yield gaps require a continuous improvement in the use of the available resources, which must be attained via implementation of better management decisions. Linear relationships between seed yield and nitrogen (N) demand are reported in the scientific literature. Main sources of N to the plant are the biological N fixation (BNF) and the soil mineralization processes. On overall, only 50-60% of soybean N demand is met by the BNF process. An unanswered scientific knowledge is still related to the ability of the BNF to satisfy soybean N demand at varying yield levels. Seed N demand not met by N fixation plus soil mineral N, is then fulfilled by the remobilization of N from vegetative organs during the seed filling period. An early remobilization process reduces the photosynthetic activity (leaves) and can limit seed yield. The objectives of this project were to: i) study yield improvements and contribution of N via utilization of contrasting N conditions under historical and modern soybean genotypes, and ii) quantify main seed N sources during the seed filling period. For objective one, four field experiments were conducted during the 2016 and 2017 growing seasons in Kansas, United States (US) and Santa Fe Province, Argentina (ARG). Those experiments investigated twenty-one historical and modern soybean genotypes with release decades from 1980s to 2010s. As for objective two, three field experiments were conducted during the 2015 and 2016 growing seasons in Kansas, US, studying three soybean genotypes: non-roundup ready (RR), released in 1997; RR-1, released in 2009; and RR-2, released in 2014. Across all studies, seeds were inoculated and tested under three N management strategies: i) control without N application (Zero-N); ii) 56 kg N ha-1 applied at reproductive growth stages (Late-N); and iii) 670 kg ha-1 equally split at three timings (Full-N). As for yield improvements and N limitation, soybean yield improvements from the 1980s to 2010s were documented, representing 29% increases in the US and 21% in ARG. Regarding N management, the Full-N fertilization produced a 12% increase in seed yields in the US and 4% in ARG. As for main seed N sources in objective two, remobilization accounted for 59% of seed N demand, and was negatively related to new N uptake occurring during the seed filling period. Seed N demand for greater yields was dependent on both, N remobilization and new N uptake, while for lower yields, seed N demand was mainly supported by the N remobilization process. These results suggest that: a) high seed yields are somehow limited by the availability of N to express their potential, although the question about N application still remains to be fully investigated, as related to the timing and the environment by plant interactions that could promote a N limitation in soybeans; b) remobilization accounts for majority (59%) of N sourced to the seed, and c) high yielding soybean (modern genotypes) rely on diverse N sources: the N remobilization process plus new uptake of N.
382

Is Plant Fitness Proportional to Seed Set? An Experiment and a Spatial Model

Campbell, Diane R., Brody, Alison K., Price, Mary V., Waser, Nickolas M., Aldridge, George 12 1900 (has links)
Individual differences in fecundity often serve as proxies for differences in overall fitness, especially when it is difficult to track the fate of an individual's offspring to reproductive maturity. Using fecundity may be biased, however, if density-dependent interactions between siblings affect survival and reproduction of offspring from high- and low-fecundity parents differently. To test for such density-dependent effects in plants, we sowed seeds of the wildflower Ipomopsis aggregata (scarlet gilia) to mimic partially overlapping seed shadows of pairs of plants, one of which produced twice as many seeds. We tested for differences in offspring success using a genetic marker to track offspring to flowering multiple years later. Without density dependence, the high-fecundity parent should produce twice as many surviving offspring. We also developed a model that considered the geometry of seed shadows and assumed limited survivors so that the number of juvenile recruits is proportional to the area. Rather than a ratio of 2:1 offspring success from high- versus low-fecundity parents, our model predicted a ratio of 1.42:1, which would translate into weaker selection. Empirical ratios of juvenile offspring and of flowers produced conformed well to the model's prediction. Extending the model shows how spatial relationships of parents and seed dispersal patterns modify inferences about relative fitness based solely on fecundity.
383

Comparing Genetic Modification and Genetic Editing Technolgies: Minimal Required Acreage

Neadeau, Joseph Francis January 2018 (has links)
There are many technologies being developed for crop breeding. Two interesting technologies are genetic modification and genetic editing. Competitive pressures and changing consumer preferences are forcing organizations to invest heavily in these two technologies. Organizations must decide which traits they want to target and must commit significant time a money to the project. Traditionally, firms would decide which project to embark on if the project is net present value positive. Throughout the research and development process managers have flexibility to abandon the project once new information is received. That flexibility has value and real option analysis must be performed to value that flexibility. Once the value of a GM and GE project is determined, how might an organization decide which project to do? The concept of minimum required acreage (MRA) is developed in this study, allowing organizations to compare GM and GE technologies and decide which project to invest it.
384

Seed dispersal by black-backed Jackals (Canis mesomelas) and hairy-footed gerbils (Gerbillurus spp.) of !nara (Acanthosicyos horridus) in the central Namib Desert

Shikesho, Saima Dhiginina 29 September 2021 (has links)
This study investigated primary seed dispersal of !nara (Acanthosicyos horridus) by Blackbacked Jackals (Canis mesomelas) and secondary seed dispersal by scatter-hoarding hairyfooted gerbils (Gerbilliscus (Gerbillurus) spp.) in the central Namib Desert. This was accomplished by examining visitation rates and fruit removal of !nara melons, primarily by jackals. In addition, I determined the viability and germination rate of !nara seeds collected from jackal scat. The results indicate that jackals were the dominant species to visit !nara (93.3%) and the only !nara frugivores recorded by camera traps over two !nara fruiting seasons. There was no difference in the viability of ingested seeds and control seeds, but germination rates of ingested !nara seeds were significantly higher (50.4%) than control !nara seeds (34%). This component of the study suggests that Black-backed Jackals are the main primary dispersers of !nara seeds in the central Namib Desert. I furthermore examined secondary seed dispersal by tracking !nara seeds to determine whether scatter-hoarding hairyfooted gerbils were caching or consuming seeds. I recorded the distance moved, depth of seed burial, recovery rate and the habitats in which seeds were buried in three habitat types. Hairyfooted gerbils removed 100% !nara seeds from experimental sites and cached 60.3 % of all the !nara seeds removed. The gerbils frequently retrieved the buried caches within two days (77% of the time) and re-cached them elsewhere. The majority of caches were in the open areas (83%) and only consisted of one (39%) or two seeds (45%). Only 1.7% of the cached seeds were not retrieved by the gerbils during the 30-day observation periods. !Nara seeds were moved an average distance of 29.1±1.6 m and buried at an average depth of 4±0.2 cm. Although there is high probability of cache retrieval, some of the cached seeds survived. As gerbil caches are at favourable locations for plant establishment, and as it is more likely that buried seeds will survive until suitable conditions for germination and seedling establishment, seed dispersal by hairy-footed gerbils is advantageous to !nara plants. Therefore, hairy-footed gerbil species in the central Namib Desert contributed to secondary seed dispersal of !nara. The combined interaction of endozoochory by Black-backed Jackals (Canis mesomelas) and synzoochory by hairy-footed gerbils (Gerbillurus spp.) in dispersing seeds of !nara plants (Acanthosicyos horridus) in the central Namib Desert suggest diplochory is highly likely.
385

Insights into Storage Oil Biosynthesis: Comparative Transcriptomics of Seed and Non-Seed Tissues

Kilaru, Aruna, Ohlrogge, J. 01 January 2011 (has links)
No description available.
386

Small mammal community structure (Rodentia: Muridae) in Punda Maria, Kruger National Park, South Africa : Causes and consequences

Scholtz, Rheinhardt 09 March 2017 (has links)
The population dynamics of small mammal populations in Punda Maria, Kruger National Park, South Africa was investigated with respect to community size and structure, seed predation and dispersal of several trees. Species populations, community structure and habitat attributes were measured at six sites comprising of 3 habitat types (2 sites per habitat); namely Acaciagrassland, North-facing and South-facing sloped sites. Seasonal variation was investigated at the Acacia sites during late summer (April) and winter months (July). Five habitat attributes were measured; percentages of total cover and herbage, plant litter depth (cm), height of dominant vegetation type measured (m) and edaphic condition were recorded at 15 randomly selected traps per site. Almonds (Prunus dulcis), baobabs (Adansonia digitata), mopane (Colophospermum mopane), and Acacia tortilis seeds were used in the predation and dispersal experiment. North- and South-facing sites were dominated by Aethomys sp. while Acacia sites were dominated by Mastomys natalensis. Seed predation was high at the North-facing slopes, with a significant difference in predation on A. tortilis seeds. Seed dispersal activity was low; no , scatter hoarding was identified; only larder hoarding was observed by Aethomys sp. and M. natalensis at North-facing sites and Acacia sites respectively. Trampling by megaherbivore activity impacted vegetation structure and has negatively affected rodent population and ground activity, particularly at the Acacia sites.
387

Developing Rangeland Restoration Techniques: A Look at Phosphorus Fertilizer as a Seed Coating to Improve Bluebunch Wheatgrass Growth

Parkinson, Morgan Elaine 30 July 2020 (has links)
Planting native species after a major disturbance is a critical tool land managers use to stabilize soils, restore ecosystem processes, and prevent weed invasion. However, within the sagebrush steppe and other arid and semi-arid environments the percentage of sown seeds that produce an adult plant is remarkably low. Applying fertilizers at the time of planting may improve native plant establishment by increasing the ability of the seedlings to cope with environmental stresses. However, traditional fertilizer applications are often economically infeasible and may be counterproductive by encouraging weed invasion. Seed coating technology allows for the efficient application of fertilizers within the microsite of the seeded species. The objective of our research was to determine the optimal rate of fertilizer to apply to the seed to improve seedling emergence and plant growth. We applied a phosphorus (P) rich fertilizer (0.13 g P g-1) to bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) Á. Löve) seeds in a rotary coater at rates ranging from 0 to 50 g of fertilizer 100 g-1 seed. Three separate studies were conducted to test germination, biomass, relative growth rate, and tissue nutrient uptake. Study one showed decreasing root and shoot biomass and increasing time to 50% germination as fertilizer rates increased. Study two showed no difference in relative growth rate between the controls and fertilizer treatments. Study three showed no difference in root and shoot biomass or nutrient concentration between treatments except in the lowest fertilizer treatment (10 g fertilizer 100 g-1 seed), which was significantly lower in root and shoot biomass than all other treatments but had higher P tissue concentrations than all other treatments. Collectively these results showed no evidence that a P fertilizer coating could aid in bluebunch wheatgrass seedling establishment. Because bluebunch wheatgrass and similar late-seral plants have evolved with low nutrient requirements they may not be physiologically capable of handling increased nutrient supply, which may explain the results of our studies. Continued studies and fieldwork need to be performed to evaluate the potential of fertilizer seed coatings in restoration efforts.
388

Seed Production and Seed Quality in Red Maple (Acer rubrum L.)

Goszka, Abigail R. 20 September 2019 (has links)
No description available.
389

An Assessment of Cattle Traffic on, and Seed Dispersion Patterns of, Sclerocactus wrightiae

Lariviere, David D. 14 August 2023 (has links) (PDF)
Cattle grazing has been a historic use of rangelands in Utah since Pioneer settlement in the mid 1800's. Wright fishhook cactus is a small globose cactus endemic to an area of 280,000 ha in south-central Utah and was listed as endangered in October of 1979, by the U.S. Fish and Wildlife Service (USFWS). By 2010, concerns were expressed that soil compaction in proximity to the cactus posed a threat to this species, though there was no empirical data to support such concern. In order to assess the impact of cattle traffic on Wright fishhook cactus, we used an imprint device to simulate a cow track's impact. We applied a treatment of either zero, one, or four hoof imprints within 15 cm evenly of 146 cacti within the same population cluster on the same day. We monitored subsequent plant survival as well as reproductive success. Each cactus in the study was visited multiple times and all developed seed was collected. We found that cattle traffic of any amount had no effect on plant survival or seed production and therefore concluded that cattle traffic poses no threat to Wright fishhook cactus. The status of this cactus yields no justification for changing the historic land management use of cattle grazing on these rangelands. Seedbank abundance and location has not been examined for any species within the genus Sclerocactus. Over a one-day period, we took 500 soil samples from various locations near the cactus and potential nurse-plants. We found that approximately 1% of annual seed production makes it into the seedbank, a number in line with other species in the Cactaceae family. Seedbank densities were highest immediately adjacent to, and downslope from, parent plants. Understanding the dynamics of the seedbank of this species could lead to more informed management practices.
390

Assessing the Distribution and Impact of <I>Bean pod mottle virus</I> (BPMV) as a Re-emerging Virus, and <I>Soybean mosaic virus </I>(SMV) in Soybean Grown in Virginia

Mackasmiel, Lucas A. 10 September 2004 (has links)
<I>Bean pod mottle virus </I>(BPMV, Genus <I>Comovirus</I>, Family: <I>Comoviridae</I>)is an important virus in soybean (<I>Glycine max</I> (L.) Merrill), causing quality and yield loss due to seed coat mottling and seed weight reduction. Although BPMV has been known in Virginia since 1958 and has always been regarded as causing negligible losses, its impact is changing as BPMV incidence has increased in many soybean growing areas of Virginia and the USA in general. From 1997 to 2001, a total of five BPMV isolates (V-W1, V-W2, V-S98-1, V-S98-15 and V-S01-10) were collected in Virginia and characterized. In this study, the effects of these isolates were studied, alone or with Soybean mosaic virus (SMV, Genus Potyvirus, Family Potyviridae) strain SMV G1, and isolates S98-51 and S98-52, on selected soybean cultivars. Individual isolates of BPMV showed variable symptom severity, and resulted in yield loss of between 40.4 to 58.1%, while SMV caused 23.7% in the most severe interactions. Up to 100% yield loss was realized from double inoculations of selected BPMV and SMV isolates, BPMV V-S98-1 + SMV S98-52 and BPMV S98-15 + SMV S98-52 on Hutcheson and Hutcheson Roundup Ready&#174; (BC5) soybeans, respectively. Time of inoculation, a critical factor in the impact of many virus diseases, affected seed coat mottling in four cultivars and seed weight in two cultivars, in tests with four BPMV isolates and three stages of soybean development. All BPMV isolates inoculated to plants at vegetative stage V1-V3 severely increased seed coat mottling and reduced seed weight than those inoculated at V4-V6 and reproductive stage R1-R3. Seedlings grown from non-mottled seeds germinated more uniformly had fewer thin-stemmed seedlings and grew faster than those grown from mottled seeds. Inoculation of various cultivars and breeding lines showed that there was no correlation between the severity of virus-induced foliar symptoms, relative accumulation of SMV, and extent of seed coat mottling. Thus, by avoiding the presence of BPMV at an early growth stage through proper timing of planting to avoid vectors, proper cultural practices like weed control, use of SMV free seeds, and chemical control, it is possible to greatly improve seed quality and reduce yield losses in soybean. / Ph. D.

Page generated in 0.0792 seconds