81 |
\"Segmentação de mercado com enfoque em valores e estilo de vida (segmentação psicográfica) - um estudo exploratório\" / Marketing Segmentation focused in Values and Lifestyles (Psychographics) - an Exploratory Study.Tomanari, Silvia Assumpção do Amaral 22 April 2003 (has links)
O presente estudo aborda, em nível exploratório, a Segmentação de Mercado com enfoque na Segmentação Psicográfica, tendo como objetivos principais: explorar e clarificar o conceito de Segmentação Psicográfica, contribuir para o crescimento do conhecimento mercadológico brasileiro e oferecer um material de referência sobre Segmentação de Mercado e Segmentação Psicográfica. Para tanto, foram analisados estudos realizados no Brasil e no exterior, suas origens e evolução, suas características e conceitos, assim como uma possível necessidade de se desenvolver um grande estudo psicográfico nacional. Mais especificamente, foram abordados: o conceito de Segmentação de Mercado, as bases para segmentar (principalmente a base psicográfica), o desenvolvimento histórico dos estudos psicográficos, a diferença entre Segmentação Psicográfica e Segmentação por Estilo de Vida, a diferença entre Segmentação Psicográfica e Perfil Psicográfico, a diferença entre Segmentação Psicográfica Geral e Específica, a metodologia deste tipo de segmentação e suas características e utilizações nos diversos países onde tem sido empregada. O trabalho de investigação contou com duas etapas: um Estudo Teórico-Documental, etapa em que se procedeu com uma revisão bibliográfica e análise dos dados obtidos por meio desta, e uma Investigação Empírica, etapa em que foram realizadas entrevistas com profissionais de empresas, institutos de pesquisa e agências de publicidade. Dentro do caráter exploratório do presente estudo, foi possível delinear um conjunto de dados e informações que permitem conclusões preliminares. Entre elas, a de que a prática da Segmentação Psicográfica no Brasil ainda é pequena se comparada aos Estados Unidos e aos países europeus. Isto se deve, em grande parte, ao reduzido número de publicações nacionais sobre o assunto. Nesse sentido, o presente trabalho deve servir como ponto de partida para a realização de outros estudos, na medida em que aponta caminhos para o aprofundamento deste tema tão complexo e, ao mesmo tempo, tão importante. / The present study approaches in an exploratory level the Marketing Segmentation focused in Psychographics. By making information on Marketing Segmentation available, this study proposes to explore and to clarify the concept of Psychographic Segmentation, contributing in this sense to the advance of the knowledge in Brazilian marketing. The reader will follow analysis and discussions on pshychographic studies carried out in Brazil as well as overseas; their origins and development; their concepts and characteristics; the possible demand for the development of a major Brazilian psychographic study. In particular, the present work includes the concept of Marketing Segmentation, the bases to segment (the phychographic bases mainly), the historic development of Pshychographics; the differences between Lifestyle and Psychographics; the differences between Psychographic Segmentation and Profile; the differences between General and Specific Psychographic Segmentation; the methodology used in Psychographic Segmentation; its characteristics and uses in the different countries where it has been employed. The study had two phases: the first was mainly theoretical, in which the specialized literature had been critically reviewed; the second was an empirical investigation, in which marketing, research and advertising professionals had been interviewed. Within the exploratory context of the present study, a set of data has been organized so that preliminary conclusions have been drawn. Among them, it has been concluded that Psychographic Segmentation is a relatively unusual practice in Brazil compared to the United States and European countries. One reason for that is the major lack of publications on this matter. In this sense, the present study may be a start point to further investigations, since it indicates paths for going deeper into the knowledge in Psychographics, a so complex yet so important subject matter.
|
82 |
\"Segmentação de mercado com enfoque em valores e estilo de vida (segmentação psicográfica) - um estudo exploratório\" / Marketing Segmentation focused in Values and Lifestyles (Psychographics) - an Exploratory Study.Silvia Assumpção do Amaral Tomanari 22 April 2003 (has links)
O presente estudo aborda, em nível exploratório, a Segmentação de Mercado com enfoque na Segmentação Psicográfica, tendo como objetivos principais: explorar e clarificar o conceito de Segmentação Psicográfica, contribuir para o crescimento do conhecimento mercadológico brasileiro e oferecer um material de referência sobre Segmentação de Mercado e Segmentação Psicográfica. Para tanto, foram analisados estudos realizados no Brasil e no exterior, suas origens e evolução, suas características e conceitos, assim como uma possível necessidade de se desenvolver um grande estudo psicográfico nacional. Mais especificamente, foram abordados: o conceito de Segmentação de Mercado, as bases para segmentar (principalmente a base psicográfica), o desenvolvimento histórico dos estudos psicográficos, a diferença entre Segmentação Psicográfica e Segmentação por Estilo de Vida, a diferença entre Segmentação Psicográfica e Perfil Psicográfico, a diferença entre Segmentação Psicográfica Geral e Específica, a metodologia deste tipo de segmentação e suas características e utilizações nos diversos países onde tem sido empregada. O trabalho de investigação contou com duas etapas: um Estudo Teórico-Documental, etapa em que se procedeu com uma revisão bibliográfica e análise dos dados obtidos por meio desta, e uma Investigação Empírica, etapa em que foram realizadas entrevistas com profissionais de empresas, institutos de pesquisa e agências de publicidade. Dentro do caráter exploratório do presente estudo, foi possível delinear um conjunto de dados e informações que permitem conclusões preliminares. Entre elas, a de que a prática da Segmentação Psicográfica no Brasil ainda é pequena se comparada aos Estados Unidos e aos países europeus. Isto se deve, em grande parte, ao reduzido número de publicações nacionais sobre o assunto. Nesse sentido, o presente trabalho deve servir como ponto de partida para a realização de outros estudos, na medida em que aponta caminhos para o aprofundamento deste tema tão complexo e, ao mesmo tempo, tão importante. / The present study approaches in an exploratory level the Marketing Segmentation focused in Psychographics. By making information on Marketing Segmentation available, this study proposes to explore and to clarify the concept of Psychographic Segmentation, contributing in this sense to the advance of the knowledge in Brazilian marketing. The reader will follow analysis and discussions on pshychographic studies carried out in Brazil as well as overseas; their origins and development; their concepts and characteristics; the possible demand for the development of a major Brazilian psychographic study. In particular, the present work includes the concept of Marketing Segmentation, the bases to segment (the phychographic bases mainly), the historic development of Pshychographics; the differences between Lifestyle and Psychographics; the differences between Psychographic Segmentation and Profile; the differences between General and Specific Psychographic Segmentation; the methodology used in Psychographic Segmentation; its characteristics and uses in the different countries where it has been employed. The study had two phases: the first was mainly theoretical, in which the specialized literature had been critically reviewed; the second was an empirical investigation, in which marketing, research and advertising professionals had been interviewed. Within the exploratory context of the present study, a set of data has been organized so that preliminary conclusions have been drawn. Among them, it has been concluded that Psychographic Segmentation is a relatively unusual practice in Brazil compared to the United States and European countries. One reason for that is the major lack of publications on this matter. In this sense, the present study may be a start point to further investigations, since it indicates paths for going deeper into the knowledge in Psychographics, a so complex yet so important subject matter.
|
83 |
Graph Laplacian for spectral clustering and seeded image segmentation / Estudo do Laplaciano do grafo para o problema de clusterização espectral e segmentação interativa de imagensCasaca, Wallace Correa de Oliveira 05 December 2014 (has links)
Image segmentation is an essential tool to enhance the ability of computer systems to efficiently perform elementary cognitive tasks such as detection, recognition and tracking. In this thesis we concentrate on the investigation of two fundamental topics in the context of image segmentation: spectral clustering and seeded image segmentation. We introduce two new algorithms for those topics that, in summary, rely on Laplacian-based operators, spectral graph theory, and minimization of energy functionals. The effectiveness of both segmentation algorithms is verified by visually evaluating the resulting partitions against state-of-the-art methods as well as through a variety of quantitative measures typically employed as benchmark by the image segmentation community. Our spectral-based segmentation algorithm combines image decomposition, similarity metrics, and spectral graph theory into a concise and powerful framework. An image decomposition is performed to split the input image into texture and cartoon components. Then, an affinity graph is generated and weights are assigned to the edges of the graph according to a gradient-based inner-product function. From the eigenstructure of the affinity graph, the image is partitioned through the spectral cut of the underlying graph. Moreover, the image partitioning can be improved by changing the graph weights by sketching interactively. Visual and numerical evaluation were conducted against representative spectral-based segmentation techniques using boundary and partition quality measures in the well-known BSDS dataset. Unlike most existing seed-based methods that rely on complex mathematical formulations that typically do not guarantee unique solution for the segmentation problem while still being prone to be trapped in local minima, our segmentation approach is mathematically simple to formulate, easy-to-implement, and it guarantees to produce a unique solution. Moreover, the formulation holds an anisotropic behavior, that is, pixels sharing similar attributes are preserved closer to each other while big discontinuities are naturally imposed on the boundary between image regions, thus ensuring better fitting on object boundaries. We show that the proposed approach significantly outperforms competing techniques both quantitatively as well as qualitatively, using the classical GrabCut dataset from Microsoft as a benchmark. While most of this research concentrates on the particular problem of segmenting an image, we also develop two new techniques to address the problem of image inpainting and photo colorization. Both methods couple the developed segmentation tools with other computer vision approaches in order to operate properly. / Segmentar uma image é visto nos dias de hoje como uma prerrogativa para melhorar a capacidade de sistemas de computador para realizar tarefas complexas de natureza cognitiva tais como detecção de objetos, reconhecimento de padrões e monitoramento de alvos. Esta pesquisa de doutorado visa estudar dois temas de fundamental importância no contexto de segmentação de imagens: clusterização espectral e segmentação interativa de imagens. Foram propostos dois novos algoritmos de segmentação dentro das linhas supracitadas, os quais se baseiam em operadores do Laplaciano, teoria espectral de grafos e na minimização de funcionais de energia. A eficácia de ambos os algoritmos pode ser constatada através de avaliações visuais das segmentações originadas, como também através de medidas quantitativas computadas com base nos resultados obtidos por técnicas do estado-da-arte em segmentação de imagens. Nosso primeiro algoritmo de segmentação, o qual ´e baseado na teoria espectral de grafos, combina técnicas de decomposição de imagens e medidas de similaridade em grafos em uma única e robusta ferramenta computacional. Primeiramente, um método de decomposição de imagens é aplicado para dividir a imagem alvo em duas componentes: textura e cartoon. Em seguida, um grafo de afinidade é gerado e pesos são atribuídos às suas arestas de acordo com uma função escalar proveniente de um operador de produto interno. Com base no grafo de afinidade, a imagem é então subdividida por meio do processo de corte espectral. Além disso, o resultado da segmentação pode ser refinado de forma interativa, mudando-se, desta forma, os pesos do grafo base. Experimentos visuais e numéricos foram conduzidos tomando-se por base métodos representativos do estado-da-arte e a clássica base de dados BSDS a fim de averiguar a eficiência da metodologia proposta. Ao contrário de grande parte dos métodos existentes de segmentação interativa, os quais são modelados por formulações matemáticas complexas que normalmente não garantem solução única para o problema de segmentação, nossa segunda metodologia aqui proposta é matematicamente simples de ser interpretada, fácil de implementar e ainda garante unicidade de solução. Além disso, o método proposto possui um comportamento anisotrópico, ou seja, pixels semelhantes são preservados mais próximos uns dos outros enquanto descontinuidades bruscas são impostas entre regiões da imagem onde as bordas são mais salientes. Como no caso anterior, foram realizadas diversas avaliações qualitativas e quantitativas envolvendo nossa técnica e métodos do estado-da-arte, tomando-se como referência a base de dados GrabCut da Microsoft. Enquanto a maior parte desta pesquisa de doutorado concentra-se no problema específico de segmentar imagens, como conteúdo complementar de pesquisa foram propostas duas novas técnicas para tratar o problema de retoque digital e colorização de imagens.
|
84 |
Máquinas de Vetores Suporte e a Análise de Gestos: incorporando aspectos temporais / Support Vector Machines and Gesture Analysis: incorporating temporal aspectsMadeo, Renata Cristina Barros 15 May 2013 (has links)
Recentemente, tem se percebido um interesse maior da área de computação pela pesquisa em análise de gestos. Parte dessas pesquisas visa dar suporte aos pesquisadores da área de \"estudos dos gestos\", que estuda o uso de partes do corpo para fins comunicativos. Pesquisadores dessa área analisam gestos a partir de transcrições de conversas ou discursos gravados em vídeo. Para a transcrição dos gestos, geralmente realiza-se a sua segmentação em unidades gestuais e fases. O presente trabalho tem por objetivo desenvolver estratégias para segmentação automatizada das unidades gestuais e das fases dos gestos contidos em um vídeo no contexto de contação de histórias, formulando o problema como uma tarefa de classificação supervisionada. As Máquinas de Vetores Suporte foram escolhidas como método de classificação, devido à sua capacidade de generalização e aos bons resultados obtidos para diversos problemas complexos. Máquinas de Vetores Suporte, porém, não consideram os aspectos temporais dos dados, características que são importantes na análise dos gestos. Por esse motivo, este trabalho investiga métodos de representação temporal e variações das Máquinas de Vetores Suporte que consideram raciocínio temporal. Vários experimentos foram executados neste contexto para segmentação de unidades gestuais. Os melhores resultados foram obtidos com Máquinas de Vetores Suporte tradicionais aplicadas a dados janelados. Além disso, três estratégias de classificação multiclasse foram aplicadas ao problema de segmentação das fases dos gestos. Os resultados indicam que um bom desempenho para a segmentação de gestos pode ser obtido ao realizar o treinamento da estratégia com um trecho inicial do vídeo para obter uma segmentação automatizada do restante do vídeo. Assim, os pesquisadores da área de \"estudos dos gestos\" poderiam segmentar manualmente apenas um trecho do vídeo, reduzindo o tempo necessário para realizar a análise dos gestos presentes em gravações longas. / Recently, it has been noted an increasing interest from computer science for research on gesture analysis. Some of these researches aims at supporting researchers from \"gesture studies\", which studies the use of several body parts for communicative purposes. Researchers of \"gesture studies\" analyze gestures from transcriptions of conversations and discourses recorded in video. For gesture transcriptions, gesture unit segmentation and gesture phase segmentation are usually employed. This study aims to develop strategies for automated segmentation of gestural units and phases of gestures contained in a video in the context of storytelling, formulating the problem as a supervised classification task. Support Vector Machines were selected as classification method, because of its ability to generalize and good results obtained for many complex problems. Support Vector Machines, however, do not consider the temporal aspects of data, characteristics that are important for gesture analysis. Therefore, this paper investigates methods of temporal representation and variations of the Support Vector machines that consider temporal reasoning. Several experiments were performed in this context for gesture units segmentation. The best results were obtained with traditional Support Vector Machines applied to windowed data. In addition, three strategies of multiclass classification were applied to the problem of gesture phase segmentation. The results indicate that a good performance for gesture segmentation can be obtained by training the strategy with an initial part of the video to get an automated segmentation of the rest of the video. Thus, researchers in \"gesture studies\" could manually segment only part of the video, reducing the time needed to perform the analysis of gestures contained in long recordings.
|
85 |
Classificação de imagens de plâncton usando múltiplas segmentações / Plankton image classification using multiple segmentationsFernandez, Mariela Atausinchi 27 March 2017 (has links)
Plâncton são organismos microscópicos que constituem a base da cadeia alimentar de ecossistemas aquáticos. Eles têm importante papel no ciclo do carbono pois são os responsáveis pela absorção do carbono na superfície dos oceanos. Detectar, estimar e monitorar a distribuição das diferentes espécies são atividades importantes para se compreender o papel do plâncton e as consequências decorrentes de alterações em seu ambiente. Parte dos estudos deste tipo é baseada no uso de técnicas de imageamento de volumes de água. Devido à grande quantidade de imagens que são geradas, métodos computacionais para auxiliar no processo de análise das imagens estão sob demanda. Neste trabalho abordamos o problema de identificação da espécie. Adotamos o pipeline convencional que consiste dos passos de detecção de alvo, segmentação (delineação de contorno), extração de características, e classificação. Na primeira parte deste trabalho abordamos o problema de escolha de um algoritmo de segmentação adequado. Uma vez que a avaliação de resultados de segmentação é subjetiva e demorada, propomos um método para avaliar algoritmos de segmentação por meio da avaliação da classificação no final do pipeline. Experimentos com esse método mostraram que algoritmos de segmentação distintos podem ser adequados para a identificação de espécies de classes distintas. Portanto, na segunda parte do trabalho propomos um método de classificação que leva em consideração múltiplas segmentações. Especificamente, múltiplas segmentações são calculadas e classificadores são treinados individualmente para cada segmentação, os quais são então combinados para construir o classificador final. Resultados experimentais mostram que a acurácia obtida com a combinação de classificadores é superior em mais de 2% à acurácia obtida com classificadores usando uma segmentação fixa. Os métodos propostos podem ser úteis para a construção de sistemas de identificação de plâncton que sejam capazes de se ajustar rapidamente às mudanças nas características das imagens. / Plankton are microscopic organisms that constitute the basis of the food chain of aquatic ecosystems. They have an important role in the carbon cycle as they are responsible for the absorption of carbon in the ocean surfaces. Detecting, estimating and monitoring the distribution of plankton species are important activities for understanding the role of plankton and the consequences of changes in their environment. Part of these type of studies is based on the analysis of water volumes by means of imaging techniques. Due to the large quantity of generated images, computational methods for helping the process of image analysis are in demand. In this work we address the problem of species identification. We follow the conventional pipeline consisting of target detection, segmentation (contour delineation), feature extraction, and classification steps. In the first part of this work we address the problem of choosing an appropriate segmentation algorithm. Since evaluating segmentation results is a subjective and time consuming task, we propose a method to evaluate segmentation algorithms by evaluating the classification results at the end of the pipeline. Experiments with this method showed that distinct segmentation algorithms might be appropriate for identifying species of distinct classes. Therefore, in the second part of this work we propose a classification method that takes into consideration multiple segmentations. Specifically, multiple segmentations are computed and classifiers are trained individually for each segmentation, which are then combined to build the final classifier. Experimental results show that the accuracy obtained with the combined classifier is superior in more than 2% to the accuracy obtained with classifiers using a fixed segmentation. The proposed methods can be useful to build plankton identification systems that are able to quickly adjust to changes in the characteristics of the images.
|
86 |
Avaliação objetiva de qualidade de segmentação. / Objective assessment of segmentation quality.Sanches, Silvio Ricardo Rodrigues 21 May 2013 (has links)
A avaliação de qualidade de segmentação de vídeos tem se mostrado um problema pouco investigado no meio científico. Apesar disso, estudos recentes na área resultaram em algumas métricas que têm como finalidade avaliar objetivamente a qualidade da segmentação produzida pelos algoritmos. Tais métricas consideram as diferentes formas em que os erros ocorrem (fatores perceptuais) e seus parâmetros são ajustados de acordo com a aplicação em que se pretende utilizar os vídeos segmentados. Neste trabalho apresentam-se: i) uma avaliação da métrica que representa o estado-da-arte, demonstrando que seu desempenho varia de acordo com o algoritmo; ii) um método subjetivo para avaliação de qualidade de segmentação; e iii) uma nova métrica perceptual objetiva, derivada do método subjetivo aqui proposto, capaz de encontrar o melhor ajuste dos parâmetros de dois algoritmos de segmentação encontrados na literatura, quando os vídeos por eles segmentados são utilizados na composição de cenas em ambientes de Teleconferência Imersiva. / Assessment of video segmentation quality is a problem seldom investigated by the scientific community. Nevertheless, recent studies presented some objective metrics to evaluate algorithms. Such metrics consider different ways in which segmentation errors occur (perceptual factors) and its parameters are adjusted according to the application for which the segmented frames are intended. In this work: i) we demonstrate empirically that the performance of existing metrics changes according to the segmentation algorithm; ii) we developed a subjective method to evaluate segmentation quality; and iii) we contribute with a new objective metric derived on the basis of experiments from subjective method in order to adjust the parameters of two bilayer segmentation algorithms found in the literature when these algorithms are used for compose scenes in Immersive Teleconference environments.
|
87 |
Segmentação automática de vídeo em cenas baseada em coerência entre tomadas / Automatic scenes video segmentation based on shot coherenceTrojahn, Tiago Henrique 24 February 2014 (has links)
A popularização de aplicativos e dispositivos capazes de produzir, exibir e editar conteúdos multimídia fez surgir a necessidade de se adaptar, modificar e customizar diferentes tipos de mídia a diferentes necessidades do usuário. Nesse contexto, a área de Personalização e Adaptação de Conteúdo busca desenvolver soluções que atendam a tais necessidades. Sistemas de personalização, em geral, necessitam conhecer os dados presentes na mídia, surgindo, assim, a necessidade de uma indexação do conteúdo presente na mídia. No caso de vídeo digital, os esforços para a indexação automática utilizam como passo inicial a segmentação de vídeos em unidades de informação menores, como tomadas e cenas. A segmentação em cenas, em especial, é um desafio para pesquisadores graças a enorme variedade entre os vídeos e a própria ausência de um consenso na definição de cena. Diversas técnicas diferentes para a segmentação em cenas são reportadas na literatura. Uma técnica, em particular, destaca-se pelo baixo custo computacional: a técnica baseada em coerências visual. Utilizando-se operações de histogramas, a técnica objetiva-se a comparar tomadas adjacentes em busca de similaridades que poderiam indicar a presença de uma cena. Para melhorar os resultados obtidos, autores de trabalhos com tal enfoque utilizam-se de outras características, capazes de medir a \"quantidade de movimento\" das cenas, como os vetores de movimento. Assim, este trabalho apresenta uma técnica de segmentação de vídeo digital em tomadas e em cenas através da coerência visual e do fluxo óptico. Apresenta-se, ainda, uma série de avaliações de eficácia e de desempenho da técnica ao segmentar em tomadas e em cenas uma base de vídeo do domínio filmes / The popularization of applications and devices capable of producing, displaying and editing multimedia content did increase the need to adapt, modify and customize different types of media for different user needs. In this context, the area of Personalization and Content Adaptation seeks to develop solutions that meet these needs. Personalization systems, in general, need to know the data present in the media, thus needing for a media indexing process. In the case of digital video, the efforts for automatic indexing usually involves, as an initial step, to segment videos into smaller information units, such as shots and scenes. The scene segmentation, in particular, is a challenge to researchers due to the huge variety among the videos and the very absence of a consensus on the scene definition. Several scenes segmentation techniques are reported in the literature. One technique in particular stands out for its low computational cost: those techniques based on visual coherence. By using histograms, the technique compares adjacent shots to find similar shots which may indicate the presence of a scene. To improve the results, some related works uses other features to evaluate the motion dynamics of the scenes using features such as motion vectors. In this sense, this work presents a digital video segmentation technique for shots and scenes, using visual coherence and optical flow as its features. It also presents a series of evaluation in terms of effectiveness and performance of the technique when segmenting scenes and shots of a custom video database of the film domain
|
88 |
Máquinas de Vetores Suporte e a Análise de Gestos: incorporando aspectos temporais / Support Vector Machines and Gesture Analysis: incorporating temporal aspectsRenata Cristina Barros Madeo 15 May 2013 (has links)
Recentemente, tem se percebido um interesse maior da área de computação pela pesquisa em análise de gestos. Parte dessas pesquisas visa dar suporte aos pesquisadores da área de \"estudos dos gestos\", que estuda o uso de partes do corpo para fins comunicativos. Pesquisadores dessa área analisam gestos a partir de transcrições de conversas ou discursos gravados em vídeo. Para a transcrição dos gestos, geralmente realiza-se a sua segmentação em unidades gestuais e fases. O presente trabalho tem por objetivo desenvolver estratégias para segmentação automatizada das unidades gestuais e das fases dos gestos contidos em um vídeo no contexto de contação de histórias, formulando o problema como uma tarefa de classificação supervisionada. As Máquinas de Vetores Suporte foram escolhidas como método de classificação, devido à sua capacidade de generalização e aos bons resultados obtidos para diversos problemas complexos. Máquinas de Vetores Suporte, porém, não consideram os aspectos temporais dos dados, características que são importantes na análise dos gestos. Por esse motivo, este trabalho investiga métodos de representação temporal e variações das Máquinas de Vetores Suporte que consideram raciocínio temporal. Vários experimentos foram executados neste contexto para segmentação de unidades gestuais. Os melhores resultados foram obtidos com Máquinas de Vetores Suporte tradicionais aplicadas a dados janelados. Além disso, três estratégias de classificação multiclasse foram aplicadas ao problema de segmentação das fases dos gestos. Os resultados indicam que um bom desempenho para a segmentação de gestos pode ser obtido ao realizar o treinamento da estratégia com um trecho inicial do vídeo para obter uma segmentação automatizada do restante do vídeo. Assim, os pesquisadores da área de \"estudos dos gestos\" poderiam segmentar manualmente apenas um trecho do vídeo, reduzindo o tempo necessário para realizar a análise dos gestos presentes em gravações longas. / Recently, it has been noted an increasing interest from computer science for research on gesture analysis. Some of these researches aims at supporting researchers from \"gesture studies\", which studies the use of several body parts for communicative purposes. Researchers of \"gesture studies\" analyze gestures from transcriptions of conversations and discourses recorded in video. For gesture transcriptions, gesture unit segmentation and gesture phase segmentation are usually employed. This study aims to develop strategies for automated segmentation of gestural units and phases of gestures contained in a video in the context of storytelling, formulating the problem as a supervised classification task. Support Vector Machines were selected as classification method, because of its ability to generalize and good results obtained for many complex problems. Support Vector Machines, however, do not consider the temporal aspects of data, characteristics that are important for gesture analysis. Therefore, this paper investigates methods of temporal representation and variations of the Support Vector machines that consider temporal reasoning. Several experiments were performed in this context for gesture units segmentation. The best results were obtained with traditional Support Vector Machines applied to windowed data. In addition, three strategies of multiclass classification were applied to the problem of gesture phase segmentation. The results indicate that a good performance for gesture segmentation can be obtained by training the strategy with an initial part of the video to get an automated segmentation of the rest of the video. Thus, researchers in \"gesture studies\" could manually segment only part of the video, reducing the time needed to perform the analysis of gestures contained in long recordings.
|
89 |
Avaliação objetiva de qualidade de segmentação. / Objective assessment of segmentation quality.Silvio Ricardo Rodrigues Sanches 21 May 2013 (has links)
A avaliação de qualidade de segmentação de vídeos tem se mostrado um problema pouco investigado no meio científico. Apesar disso, estudos recentes na área resultaram em algumas métricas que têm como finalidade avaliar objetivamente a qualidade da segmentação produzida pelos algoritmos. Tais métricas consideram as diferentes formas em que os erros ocorrem (fatores perceptuais) e seus parâmetros são ajustados de acordo com a aplicação em que se pretende utilizar os vídeos segmentados. Neste trabalho apresentam-se: i) uma avaliação da métrica que representa o estado-da-arte, demonstrando que seu desempenho varia de acordo com o algoritmo; ii) um método subjetivo para avaliação de qualidade de segmentação; e iii) uma nova métrica perceptual objetiva, derivada do método subjetivo aqui proposto, capaz de encontrar o melhor ajuste dos parâmetros de dois algoritmos de segmentação encontrados na literatura, quando os vídeos por eles segmentados são utilizados na composição de cenas em ambientes de Teleconferência Imersiva. / Assessment of video segmentation quality is a problem seldom investigated by the scientific community. Nevertheless, recent studies presented some objective metrics to evaluate algorithms. Such metrics consider different ways in which segmentation errors occur (perceptual factors) and its parameters are adjusted according to the application for which the segmented frames are intended. In this work: i) we demonstrate empirically that the performance of existing metrics changes according to the segmentation algorithm; ii) we developed a subjective method to evaluate segmentation quality; and iii) we contribute with a new objective metric derived on the basis of experiments from subjective method in order to adjust the parameters of two bilayer segmentation algorithms found in the literature when these algorithms are used for compose scenes in Immersive Teleconference environments.
|
90 |
Segmentação dos nódulos pulmonares através de interações baseadas em gestos / Segmentation of pulmonary nodules through interactions based on in gesturesSOUSA, Héber de Padua 29 January 2013 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-16T21:13:39Z
No. of bitstreams: 1
HeberSousa.pdf: 2248069 bytes, checksum: e89eac1d4562ac1f2f53007d699f9c71 (MD5) / Made available in DSpace on 2017-08-16T21:13:39Z (GMT). No. of bitstreams: 1
HeberSousa.pdf: 2248069 bytes, checksum: e89eac1d4562ac1f2f53007d699f9c71 (MD5)
Previous issue date: 2013-01-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Lung cancer is one of the most common of malignant tumors. It also has one of the highest
rates of mortality among cancers. The reason for this is mainly linked to late diagnosis of the
disease. For early detection of disease is very helpful to use medical images as support, the
most important being, CT. With the acquisition of digital images is becoming more common
to use computer systems for medical imaging. These systems assist in the clinical diagnosis,
disease monitoring, and in some cases is used as a support for surgery. Because the search for
new ways of human-computer interaction, natural interaction arises, which aims to provide a
form of control with higher cognition. This control is usually performed using gestures.
Interactions of gestures can be useful in controlling medical imaging systems and can ensure
necessary sterility in operating rooms, because they are not required contacts manuals. Among
the activities computer assisted important for the treatment of lung cancer, we have the
segmentation of nodules. The segmentation of nodules can be performed automatically, semiautomatically
or interactively. It is useful to speed up the diagnostic process, taking
measurements, or observe the morphological appearance of the nodule. The objective of this
study is to investigate the use of natural interaction interface for activities such as medical
image visualization and segmentation of pulmonary nodules. The paper proposes the study of
interaction techniques based on gestures to segment nodules in an interactive and
semiautomatic. Finally, conducting experiments to evaluate the techniques proposed in the
items ease of use, intuitiveness, accuracy and comfortability / O câncer de pulmão é um dos mais comuns dentre os tumores malignos. Ele também possui
uma das taxas mais altas de mortalidade dentre os tipos de câncer. O motivo disso está ligado
principalmente ao diagnóstico tardio da doença. Para a sua detecção precoce é muito útil a
utilização de imagens médicas como apoio, sendo a mais importante, a tomografia
computadorizada. Com a aquisição digital das imagens está cada vez mais comum a utilização
de sistemas computacionais de visualização médica. Estes sistemas auxiliam no diagnóstico
clínico, no acompanhamento de doenças, e em alguns casos é utilizado como apoio a cirurgias.
Em virtude da busca por novos meios de interação humano-computador, surge a interação
natural, que objetiva uma forma de controle mais próximo cognitivamente das ações realizadas, e
geralmente é realizada através de gestos. Interações por gestos podem ser úteis no controle de
sistemas de visualização médica e podem garantir a esterilização necessária em salas cirúrgicas,
pois não são necessários contatos manuais. Dentre as atividades assistidas por computador
importantes para o tratamento do câncer pulmonar, temos a segmentação de nódulos. A
segmentação de nódulos pode ser realizada de forma automática, semiautomática ou
interativamente. Elas são úteis para agilizar o processo de diagnóstico, realizar medições, ou
observar o aspecto morfológico do nódulo. O objetivo do presente trabalho é investigar a
utilização da interação natural como interface para atividades de visualização de imagens
médicas e segmentação de nódulos pulmonares. Foi implementada uma série de ferramentas
de segmentação, interativas e semiautomáticas, controladas a partir de gestos. Estes gestos
foram desenvolvidos a partir de imagens capturadas por uma câmera especial chamada Kinect,
que traduz a imagem em mapas de profundidade, podendo medir com precisão a distância de
objetos na cena. Ao final do estudo, foi realizado experimentos para avaliar as técnicas
propostas nos quesitos facilidade de uso, intuitividade, conforto e precisão.
|
Page generated in 0.071 seconds